Adaptive Sliding Window for Physical Activity Recognition

A sliding window with a fixed size is not an effective approach for activity recognition system. Misclassifications could still happen especially for transitional activities. This is due to the fact that the length of transitional activity signals varies depending on the time to complete the activity [1], [2]. To overcome the problem, the window size…

Enhancing ontological reasoning with uncertainty handling for activity recognition

Handling uncertainty is a challenge in activity recognition. Uncertainty can be due to sensor errors (e.g. run out of batteries, imprecise outputs, missing activations etc.) and communication failures. and variability in human activities. These issues may significantly influence the accuracy of activity recognition. Data-driven approaches use machine learning techniques such as Decision Tree, na├»ve Bayes…