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a b s t r a c t

Previous studies on physical activity recognition have utilized various fixed window sizes
for signal segmentation targeting specific activities. Naturally, an optimum window size
varies depending on the characteristics of activity signals and fixed window size will
not produce good segmentation for all activities. This paper presents a novel approach
to activity signal segmentation for physical activity recognition. Central to the approach
is that the window size is adaptively adjusted according to the probability of the signal
belongs to a particular activity to achieve the most effective segmentation. In addition,
an activity transition diagram for activity recognition is developed to validate the activity
transition and improve recognition accuracy. The adaptive sliding window segmentation
algorithmand the role of activity transition diagramare described in the context of physical
activity recognition. The approach recognizes not only well defined static and dynamic
activities, but also transitional activities. The presented approach has been implemented,
evaluated and compared with an existing state-of-the-art approach by using internal and
public datasets which contains activity signals of dynamic, static and transitional activities.
Results have shown that the proposed adaptive sliding window segmentation achieves
overall accuracy of 95.4% in all activities considered in the experiments compared to the
existing approach which achieved an overall accuracy of 89.9%. The proposed approach
achieved an overall accuracy of 96.5% compared to 91.9% overall accuracy with the existing
approach when tested on the public dataset.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Aging and dependent population is recognized as amajor social and economic issue for the coming decades. According to
World Health Organization, it is estimated that there will be 2 billion people of age 60 and older by 2050 [1]. In Europe, it is
expected that the elderly population of EuropeanUnion (EU27) aged 65 years or over to rise to 30% in 2060 [2]. Elderswho are
dependent and vulnerable in different aspects due to cognitive and physical impairment require assistance in their activities
of daily living (ADL). With the increase of elderly population, rise in health care cost with insufficient and ineffective care is
becoming an issue in the future. One of the promising solutions to mitigate the issue is known as assisted living systems [3].
The aim of such system is to allow elders to live independently at home and at the same time enhance their living quality.
As a result, the cost for society and public health system could be reduced [4].
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Assisted living system incorporates sensing, actuation and networking technologies and data processing techniques
to provide assistance to elderly people with their daily activities and help them to be safe and healthy while living
independently. One of the main components of assisted living system is human activity recognition (HAR) [3]. HAR is a
system that provides information about people’s actions and behavior. The system commonly uses ambient and wearable
sensors for gathering signals and processes them through machine learning techniques for classification. The activity
information can be used by the assisted living system to react and adapt to the circumstance of the user, allowing preventive
measures to be taken if necessary. For example, the stove can be automatically switched off if it is onwithout being attended
to for a long time. The information can also be used by health care professionals, caregivers and their families to provide
information and intelligent services. In context-aware elderly care system, physical activity is an essential context for higher
level context information to be inferred such as ADL and situation [5,6].

Transitional activities such as rising from a chair and sitting down is a prerequisite for maintaining independent living.
Difficulties in performing these activities can limit independence and lead to a less active lifestyle and a subsequent deteri-
oration in health [7–9]. Falls cause two thirds of fatal death in elderly people aged 65 years or older [10], and they are the
most common type of accidents among the elders [11]. Most falls occurred during postural transition activities such as from
standing to sitting and vice versa and when initiating walking [12,13]. Several features of sit-to-stand or stand-to-sit per-
formance have been associated with falls or fall risks such as transition duration and number of successful attempts [11,14].
Therefore, it is important to recognize transitional activities so that early preventive measures can be provided to prevent
fall incidents.

Activity recognition usually segments the sensor signals into windows for the successive features extraction and
classification. The size of the segmented windows is empirically selected based on past experiments and hardware
limitations for specific types of activity recognition. Majority of approaches used window size in the range of 1–6.7 s while
a few of them used larger window size such as 10 and 12.8 s [15–18]. As a result, the developed techniques may not be
applicable to be trained for recognizing different activities. In addition, misclassifications could still happen especially for
transitional activities. This is due to the fact that the length of transitional activity signals varies depending on the time
to complete the activity [17,18]. Evidently, a sliding window with a fixed size is not an effective approach for activity
recognition system. This is the motivation for our proposed approach in which the window size is dynamically adapted
during classification, based on certain characteristics in the signal, to better capture signals of different activities.

The main objective of this work is to develop a systematic adaptive signal segmentation approach for physical activity
recognition based on the use of a single accelerometer. In this paper, the foundation of adaptive sliding window approach
is presented. The approach can detect not only static and dynamic, but also transitional activity signals of varying period
as the segmentation window is being evaluated and its size adapted dynamically. The window size is adaptively adjusted
based on the continuous evaluation of the activity signals. As a result, a more effective window size can be selected for
segmentation to achieve more accurate classification. In addition, the transition model of physical activity in the form of
a transition diagram is proposed and integrated with the activity classification algorithm resulting in higher recognition
accuracy.

The rest of the paper is organized as follows. Some currently used signal segmentation techniques and physical activity
recognition systems relevant for this work are presented in Section 2 followed by the characterization of activity signals
and the rationale behind the introduction of adaptive sliding window in Section 3. Adaptive sliding window segmentation
algorithm and the role of activity transition diagram (ATD) in enhancing physical activity recognition are described in
Section 4. Then, data collection, features selection, classifiers construction and experimental setup for activity recognition
are described in Section 5. Section 6 presents the results, as well as their comparison with the existing state-of-the–art
approach. Finally, Section 7 contains the conclusions.

2. Related works

2.1. Existing signal segmentation approaches

In vision-based activity recognition, video segmentation is used to obtain a segmented video of a single action. One
of the common action segmentation techniques is boundary detection where boundaries are defined as discontinuities in
acceleration of the observed motions. A sliding window is a technique where video sequence is divided into overlapping
segments and classification is performed on all the segments to define the action segmentation. Another technique for
action segmentation is to model the transitions between actions by concatenating action grammars [19]. In sensor-based
activity recognition, signal segmentation is a technique of dividing a large signal into smaller segments for processing and
has direct impact on the quality of feature extraction and classification accuracy [20]. At the same time, it also determines
suitability of the approach for real-time operation. Numerous techniques have been proposed for signal segmentation.
Santos et al. [21] proposed an adaptive sliding window approach to improve segmentation of human action sequences
for activity recognition. In the approach, window size and time shift are dynamically adjusted based on entropy feedback to
improve the classification results. However, the experiments do not involve transitions between activities such as stand-to-
sit, sit-to-lie and lie-to-sit. Furthermore, the algorithm could be computationally expensive since shorter time shifts would
increase the rate of classifications per second. Kozina and Lustrek [22] proposed a segmentation algorithm that searches for
significant differences between consecutive samples which is defined by the reduction of the samples’ values exceed certain
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threshold. The threshold is determined by the difference of averagemaximum andminimum values of a set of samples. Bifet
&Gavalda [23] proposed a segmentation algorithm that can adapt thewindowsize according to the determination of concept
drift (change in data stream) in which, the window size is increased when the data values in the window are stable (low
concept drift) to include more training instances and decrease otherwise. The change detection is based onmean difference
of two sub-windows is greater than a given threshold. However, the algorithms are sensitive to noise such as abnormal high
or lowpeakswhich is very common in acceleration data. Núñez et al. [24] proposed theOnlineTree2 algorithmwhich uses an
adaptive windowing technique to induce improved decision tree by evaluating the performance of the decision tree. Sheng
et al. [25] proposed an adaptive time window method to extract features from quasi-periodic signals more accurately for
activity recognition. The method uses pitch extraction algorithms to achieve more effective segmentation. The experiments
involve dynamic and static activities only. Activity-defined techniques detect changes in activity and take the initial and end
time as segmentation boundaries. Then, the specific activity in the window is identified. In [26,27], wavelet analysis is used
to detect changes in frequency characteristics which indicate changes in activity. In [28], changing point which is defined
by the change in action from static activity to dynamic activity and vice versa is detected by calculating the displacement
of sensor data, and from this point the window segmentation is set and classified. Event-defined techniques locate specific
events such as heel strikes and toe-offs to segment a signal [29,30]. The detection of events is achieved by filtering the
signals to produce resultant signals which indicate the location of the events. In [31], wavelet analysis is used to detect
the heel strikes and toe-offs events. Jasiewicz et al. [32] uses foot linear accelerations and foot sagittal angular velocity
to detect the events. Benocci et al. [33] detects walking tasks on loaded conditions by identifying gait cycle through heel
strike events. Symbol-based method is used to detect heel strikes and toe-offs events in [34]. Sliding window is the most
widely used technique in activity recognition due to its simplicity. It segments the signal into a window of fixed size for
features extraction and classification. Then the window is shifted to segment new sensor data with a degree of overlap. A
degree of 50% would shift the window by half of its size, which means 50% of the previous data are included in the window.
A degree of 0% means that the windows are not overlapping. Various window sizes from 0.1 to 12.8 s have been used in
previous studies [15–18]. However, in our study we have found that fixed sliding window is not an effective segmentation
approach for activity recognition because the lengths of transitional activities are varies fromone to another. A smallwindow
size could split an activity signal while large window size could contain multiple activity signals. Both cases could lead to
suboptimal information for an activity classification algorithm.

2.2. Physical activity recognition system

Numerous HAR systems have been proposed for elderly care applications. Numerous sensors have been studied to
determine their effectiveness in activity recognition application and inertial sensors, specifically accelerometers are the
most frequently used and found to be effective in monitoring physical activities such as walking, running, standing and
sitting [35]. Most of the studies investigated the use of either multiple accelerometers worn on different body parts [36–39]
or a single accelerometer worn on a specific part of a body. Some of the studies utilized accelerometers with other sensors
such as barometer, electrocardiogram (ECG) andGPS [40,41].Multiple attachment of sensors allows the systems to recognize
complex activities such as cooking, grooming and cleaning with high accuracy. However, these systems are not feasible for
long-term activity monitoring because they impede subject’s daily physical activities due to multiple attachments to the
body [42]. The use of single accelerometer has been investigated for activity recognition with encouraging results [40,41,
43–47]. The focus of the studies is to recognize physical activities such as ambulation activities (walking, running), body
postures (sitting, standing) and postural transitions. In [40,41,43–45], fixed window size in the range of 2.56 and 10 s are
used to classify the activity signals. In [46,47], wavelet transform is used to decompose the raw acceleration signals to
extract wavelet features such as low-frequency components and wavelet coefficients using 2.56 and 10.24 s window with
50% overlapping. The results showwavelet transform can discriminate the activities effectively. However, according to [48],
time–frequency features outperforms the wavelet features in the performed experiments. All the aforementioned works do
not consider transitional activities in their studies.

Transitional activities are usually disregarded in activity recognition since the number and length of transition windows
is relatively lower and shorter than other activities as reported in [49]. A number of systems have been proposed which
consider transitional activities in the classification. Kozina et al. [50] proposed a new architecture for activity recognition to
recognize ADL, exercise activities and seven transitional activities using three accelerometers. The architecture consists of
three layers, inwhich knowledge-based andmachine learning classifiers are implemented in the first two layers. The outputs
of the classifiers are aggregated and fed to the top layer to correct the final decision of the recognized activity using a Hidden
Markov Model. In [51], an algorithm is designed to compute tilting angles using signals from three wearable sensors. The
computed tilt angles are used to classify walking, body postures and postural transitions such as stand-to-sit and sit-to-
stand. However these systems require multiple attachment of sensors to the body. Ahanathapillai et al. [52] utilized a single
accelerometer worn on the wrist to recognize walking, sitting, stand-to-sit and sit-to-stand. Using k-NN, accuracy rate of
89% was achieved. Window size is not mentioned in the study. Khan et al. [53] utilized a single accelerometer to recognize
physical activities including postural transitions such as stand-to-sit, sit-to-lie and stand-to-walk with accuracy of 97.9%.
However, fixed window size of 3.2 s is used which can give rise to an increase in false negative rate especially when the
main focus is ambulation activities and body postures rather than transitions.



44 M.H.M. Noor et al. / Pervasive and Mobile Computing 38 (2017) 41–59

Table 1
Comparison of different related works that dealing with transitional activities.

Referenced work Wearable sensing component Activities recognized

Reyes-Ortiz and colleagues Single wearable sensor: accelerometer and
gyroscope.

Seven activities: walking, walking upstairs, walking downstairs,
standing, sitting, lying down and postural transition.

Gupta and Dallas Sing wearable sensor: accelerometer. Six activities: walking, running, jumping, staying stationary,
sit-to-stand/stand-to-sit and stand-to-kneel-to-stand.

Adaptive sliding window
(this article)

Single wearable sensor: accelerometer. Ten activities: walking, standing, sitting, lying face-up, lying
face-down, stand-to-sit, sit-to-stand, sit-to-lie, lie-to-sit, falling.

Reyes-Ortiz et al. [54] presented the Transition-Aware Human Activity Recognition to deal with transitional activities:
stand-to-sit, sit-to-stand, sit-to-lie, lie-to-sit, stand-to-lie and lie-to-stand. 2.56 s and 50% fixed window overlap is used
to classify the signals from an accelerometer and a gyroscope attached to the waist. The approach uses heuristic filtering
technique to filter a sequence of classification in the form of probability vectors to recognize transitional activities by
measuring the length of the signal activation. A transitional activity is determined if the signal activation does not exceed a
threshold. However, the system does not distinguish between the different transitional activities in which the transitional
activities are classified as postural transition. The proposed approach achieved overall accuracy of 96.7%. Gupta and
Dallas [55] introduced new features to effectively capture the characteristics of transitional activities: stand-to-sit/sit-to-
stand and stand-to-kneel-to-stand. The features are mean trend, windowed mean difference, variance trend, windowed
variance difference. These features further break the fixed window size of 6 s which was used in the study into 0.5 s sub-
windowswith no overlap, and extract the characteristics of the signalswithin the sub-windows. They also evaluated features
called detrended fluctuation analysis coefficient, uncorrelated energy and maximum difference acceleration to capture the
correlation and uncorrelation between signals. The features were chosen ahead of other features such as mean, variance
and energy by Relief-Feature (Relief-F) selection algorithm and wrapper-based sequential forward floating search (SFFS).
The proposed approach achieved overall accuracy of 98%. However, stand-to-sit and sit-to-stand are not distinguished by
the system in which the activities are classified as a single class (sit-to-stand/stand-to-sit). Table 1 shows the comparison of
the related works and our proposed approach in terms of wearable sensing component and activities recognized.

All presented existing approaches used sliding window technique with various fixed window sizes and degrees of
overlappingwithout discussing criteria for selecting window size. The impact of window size on the performance of activity
recognition system has been investigated in [17,18]. The results show a variation in accuracy between the different window
sizes, with transitions being most often misclassified. In this work, the transitional activities are targeted by adaptively
adjusts the size of segmentation based on the signal information. Therefore, amore effective segmentation can be selected to
achieve more accurate classification. We validate the proposed algorithmwith an internal and public datasets. The datasets
contain physical activities and transitional activity signals of different lengths which is required for the evaluation of the
system. Additionally, we have implemented the state-of-the-art approach described in [55] to compare with the proposed
approach. Thiswork is, to the best of our knowledge, the first to propose an adaptive slidingwindow to dealwith transitional
activities.

3. Characterization of activity signals

A key factor in signal segmentation is to select the suitable window size for activity classification. Window size is
important because it needs to capture necessary characteristics of a signal in order to achieve correct detection/classification.
Short windows could slice an activity signal into multiple separate windows. Thus a truncated signal lacks the full
information to describe the activity. On the other hand, larger window size could contain multiple activity signals which
could also lead to misinterpretation of physical activities. The most effective window size depends on the type of signals
being evaluated because different activities have different periods of motion. The scenario is shown in Fig. 1. The signal
contains three activity signals (A1, A2 and A3) with varying length. The fixed sliding window with 50% overlapping is
employed to classify the activities. As shown in Fig. 1, only signal A2 is shorter than the window size while signals A1 and
A3 are longer. Therefore, the signals are not fully segmented by window W1, W2 and W4. In both cases, misclassification
could happen because the windows do not have optimal information of the signals.

To demonstrate the differences in signal characteristics and motion periods, three scenarios of activity signal are
considered and illustrated in Figs. 2 and 3. The signals are generated at 50 Hz by an accelerometer attached to the right
waist. In the first scenario, the signals are generated by dynamic activity. Dynamic activity signal exhibits periodic behavior
with high frequency components and the trend is generally flat. An acceleration signal along the horizontal axis, Ay of a
dynamic activity (walking) is illustrated in Fig. 2(a). The second scenario involves segmenting signals generated by static
activities. Since static activities do not involvemuch bodymovement, the generated signals have almost constantmagnitude
values and very low frequency components. Therefore, the trend of the signals is also generally flat. Fig. 2(b) illustrates the
acceleration signal along the horizontal axis, Ay of the standing activity.

In the third scenario, the signals have low frequency components and the magnitude is either increasing or decreasing.
Furthermore, the signal length is varying from one to another. This type of signal is generated by transitional activities. For
example, from the position of standing to sitting, the trend of the acceleration signal along the horizontal axis is decreasing
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Fig. 1. Activity classification with fixed sliding window.

Fig. 2. Acceleration plots for (a) walking activity and (b) standing activity.

before the magnitude is stabilized at −5 m/s2, and it takes 2.5 s (125 samples) to complete as illustrated in Fig. 3(a). The
flat signal indicates the person is in sitting position. Conversely, when the person is getting up, the trend of the signal is
increasing before themagnitude stabilizes at 0m/s2, and it takes 0.4 s (20 samples) longer to complete as shown in Fig. 3(b).
Evidently, fixed size window is not the most effective approach to achieve accurate activity recognition due to the diverse
characteristics and periods of different activity signals.

In this paper, we present the adaptive sliding window algorithm for physical activity recognition as shown in Fig. 4. In
Fig. 4, activity signals of varying length are being classified by employing adaptive sliding window. The algorithm has an
initial size of window used for segmentation which can be expanded dynamically to accommodate more samples if the
signal is deemed longer than the current window size. The scenario is shown in Fig. 4, in which windows W1’ and W3’
are the actual segmentation window expanded fromW1 andW3 respectively since signals A1 and A3 are longer than initial
window size. In this way, amore effective segmentation for classification can be achieved. The key challenges are the criteria
for triggering window size expansion, how to adapt the window size to capture the whole signal and how to determine the
most effective window size.

4. Proposed method

The block diagram of the proposed physical activity recognition system is given in Fig. 5. The activity signal from
accelerometer is pre-processed for noise filtering. Then, relevant features are extracted from the signal for activity
classification. The classification system consists of three classifiers: transitional activity detector, non-transitional activity
classifier and transitional activity classifier. All three classifiers are implemented as a Decision Tree. The implementation of
the classifiers is described in Section 5.2. The function of transitional activity detector is to differentiate transitional activity
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Fig. 3. Acceleration plots for stand-to-sit activity and sit-to-stand activity signals sampled at a rate of 50 Hz.

Fig. 4. Activity classification with adaptive sliding window.

signal fromstatic/dynamic activity signals by processing the signal in the fixed initialwindowsize.When transitional activity
signal is identified, adaptive sliding window is executed and the signal is classified by transitional activity classifier. Then,
the window is expanded to determine the most effective segmentation by calculating the probability of the segmented
signal belong to a particular activity given a set of features, which is classified by transitional activity classifier. Multivariate
Gaussian distribution is used to calculate the probability. The windowwill be expanded as long as the calculated probability
is increasing in each iteration. If the signal is non-transitional activity, fixed sliding window is executed and the signal is
classified by non-transitional activity classifier.

In order to make a classification of an activity more robust, a further enhancement of activity recognition is proposed by
integration of a transition model of physical activities represented by an ATD, in the activity recognition system. The ATD is
a part of the state validator of the activity recognition system. The role of the state validator is to provide feedbacks to the
system in order to improve the accuracy of classification. The state validator consists of invalid activity transition detector,
three state buffers andATD. The function of invalid activity transition detector is to check the validity of an activity transition.
State buffers are to store the three consecutively classified activities, the current one and two immediately preceding ones.
The classification system provides the recognized activity for every classified window to the state validator. Each time the
current activity is updated, the activity transition validity is checked by the invalid activity transition detector. In the case of
an invalid activity transition, multivariate Gaussian distribution is applied to re-classify the signal. Next possible activities
are acquired from ATD to aid the re-classification process.
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Fig. 5. The block diagram of physical activity recognition system.

4.1. Adaptive sliding window

The proposed algorithm requires transitional activity signals to be detected in order to trigger the usage of adaptive
sliding window technique. Therefore, a feature that can effectively capture the acceleration trend (increasing or decreasing)
needs to be determined for identifying the transitional activity. The process of selecting the features for transitional activity
detector is described in Section 5.2. The pseudo-code is shown in Fig. 6. The algorithm starts with an initial (default) window
size for signal segmentation and classification. The algorithm first distinguishes non-transitional activity (static/dynamic
activity) and transitional activity as thewindows are being evaluated as defined by line 1–2. Detection of transitional activity
signal is performed for every window classification. If a transitional activity window is detected, adaptive sliding window
algorithm is executed to expand the window size and segment the transitional activity signal. Otherwise, the window will
be classified by the non-transitional (dynamic/static) activity classifier as defined by lines 4. Lines 6–16 define the adaptive
sliding window process, which are executed whenever transitional activity signal is detected. The algorithm starts with
extracting features to be evaluated by transitional activity classifier, and then calculates the probability density function
(PDF) of the classified activity which is used to determine the most effective window segmentation.

Probability density function of d-dimensional data (features) x = {x} given an activity, Aj, denoted by p

x; µj, 6j


is calculated by using multivariate Gaussian distribution, which allows correlation between multiple features and their
relevance to the problem to be modeled [56] as follows. Probability density function is the likelihood that a signal belongs
to a particular activity, which is used to determine the most effective window segmentation.

p

x|Aj


∝ p


x; µj, 6j


=

1

(2π)n/2
6j

1/2 e−
1
2 (x−µj)

T
Σ−1(x−µj) (1)

where n is the dimension of the feature vector. µj is the mean matrix and 6j is the covariance matrix corresponding to the
features extracted from the window. Parameters µj and 6j are estimated from the training datasets as follows:

µj =
1
Nj


x∈Aj

x (2)

6j =
1
Nj


x∈Aj

xxT − µjµ
T
j (3)

where Nj is the total number of observations belonging to activity, Aj. The same features used by the regular classifiers are
used to model the distribution.

Based on the recognition result and PDF, the windowmay be expanded to capture a longer duration transitional activity
signal. Window expansion algorithm is an iterative process in which the window size is expanded by an expansion factor
(ef ) of the initial window size as defined by line 12. The expansion factor in the range of 0 ≤ ef ≤ 1 is predefined to
determine the size of window expansion. A value of one (ef = 1) indicates that the window is expanded by the size of
the initial window. In each iteration, the features of the signal are computed for the transitional activity classifier to be
evaluated. Then the PDF of the window corresponding to the activity is calculated. The window will continue expanding
until the most effective window segmentation is found. The most effective window segmentation is the window with the
highest probability density function value.
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Fig. 6. Adaptive sliding window algorithm.

Fig. 7. Window expansion scenario.

One window expansion scenario is illustrated in Fig. 7. Fig. 7 shows that the window has been expanded two times.Wi,0,
Wi,1 and Wi,2 denote the initial window and the windows after each expansion. The PDF for each window is denoted by
pSi,j,0, pSi,j,1 and pSi,j,2. In this scenario, since PDF value of Wi,2 is lower than the PDF value of Wi,1, the window expansion
operation is stopped atWi,2 and Wi,1 is determined as the most effective window segmentation.

Three conditions are defined as stopping conditions of the window expansion. Firstly, classification of current iteration
is found to be different than the initial classification. Initial classification is defined by the transitional activity classifier in
the first iteration of window expansion. If classification result is changed in the next iteration, it is assumed the window
contains other activity signal and hence affecting the classification. Secondly, the computed probability density function of
current iteration is lower than of the previous iteration. This indicates the window contains other activity signal which is
the reason of the smaller PDF value. Lastly, the window reaches its maximum number of expansions and the window stop
expanding. After window classification process is finished, line 18 shifts the window forward to segment new samples with
an overlapping factor (of ). The overlapping factor determines the number of samples from currentwindow to be overlapped
by the nextwindow. In otherwords, the newwindowwill contain some samples from the previouswindow. The overlapping
factor is in the range of 0 ≤ of ≤ 1.
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Fig. 8. Activity transition diagram.

Fig. 9. Two invalid activity transition scenarios which can be detected by the state validator.

4.2. Transition model of physical activities

The transition model of physical activity in the form of Activity Transition Diagram (ATD) is proposed as illustrated in
Fig. 8. All activities are represented as states, and the transitions define conditions under which we consider changes of
the states. These conditions are not depicted in the figure and will be explained in the following text. The state transitions
reflect the possible transitions between activities. For example, from standing position, a person can perform either walking
or sitting. There are two possible scenarios of invalid activity transition which can be detected by the state validator as
illustrated in Fig. 9. The shaded windows are misclassified. The first scenario involves the occurrence of invalid activity
transition due to misclassification of current window, Wi,k. As shown in Fig. 9, activity transition from walking activity
(Wi−1,k) to sit-to-stand activity (Wi,k) is an invalid transition, which will be detected by the state validator. In the second
scenario, the current window,Wi,k is correctly classified, but violation of activity transition is caused due tomisclassification
of the previous window, Wi−1,k. As shown in Fig. 9, walking activity (Wi,k) is correctly classified but an invalid activity
transition is detected (falling to walking) due to misclassification on Wi−1,k. However no invalid activity transition was
detected frompreviouswindow becausewalking to falling is a valid transition. Note that, the state validator can only detects
invalid activity transition by checking the activity transition from the previous window to current window. But it does not
know which window is being misclassified.

In the case of invalid activity transition, the state validatorwill notify the classification system to re-perform classification
on the windows. The re-classification algorithm is given in Fig. 10. The algorithm begins by calculating features of window
Wi−1,k. Then, using the ATD, all possible next activities of the previous window (i.e. Wi−2,k) are acquired for reclassifying
Wi−1,k.

Using scenario 2 as an example, the algorithm will acquire next possible activities of window Wi−2,k (walking) which
are walking, falling, standing and stand-to-sit. Next, for each next possible activity, the probability density functions of
extracted features are calculated using the multivariate Gaussian distribution explained in Section 4.1. Among the possible
next activities, the one that has the highest probability density function value will now be assigned as the state of window
Wi−1,k. Then, the same process is repeated for window Wi,k. Notice that, the algorithm performs re-classification on the
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Fig. 10. Re-classification algorithm.

Fig. 11. The sensor position and its coordinate system.

current window and its previous window to handle both invalid transition scenarios without having any prior knowledge
on which one is misclassified. In order not to invalidate all previous activity transitions, the algorithm acquires only valid
next activities of the previous window to perform re-classification.

5. Experimental setup for physical activity recognition

5.1. Device and data collection

Digital tri-axial accelerometer is a sensing device which can measure the acceleration in three mutually orthogonal
directions. Virtenio Preon32 wireless sensor node with a digital tri-axial accelerometer is used in this research for data
acquisition. The accelerometer is configured to collect acceleration in the range of ±4.0 g at a sampling rate of 50 Hz during
the experiments. Previous study results show that sampling rate beyond 20Hz increases recognition accuracy by just 1% and
without further improvements beyond 50 Hz [57]. Therefore, sampling rate of 50 Hz is considered to be sufficient. A single
tri-axial accelerometer worn on the right waist achieved the highest recognition accuracy in a single sensor comparison
study [39,57,58] and hence is used in this research. The sensor position with its coordinate system is illustrated in Fig. 11.

The accelerometer measures acceleration along X-axis or vertical axis (Ax), Y -axis or horizontal axis (Ay) and Z-axis or
sideway axis (Az). The low pass filter with 0.5 Hz cutoff frequency fc is applied to separate the acceleration force from
gravity force. The separation process produces linear acceleration (LAi) and is performed for each axis to generate LAx, LAy,
and LAz . Acceleration and linear acceleration in the horizontal plane (Ayz and LAyz), vertical plane (Axy and LAxy) and resultant
acceleration (Axyz and LAxyz) are derived from raw and linear acceleration. The tilt angle (TA) of the body trunk can be derived
by cos−1 LAx/LAxyz . In total, thirteen signals including the raw acceleration, linear acceleration, horizontal and vertical plane
acceleration, resultant acceleration and tilt angle are investigated. Table 2 list all the thirteen signals.
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Table 2
Summary of the thirteen signals.

Signals Descriptions

Ax Vertical axis (X-axis)
Ay Horizontal axis (Y -axis)
Az Sideway axis (Z-axis)
Axy Vertical plane
Ayz Horizontal plane
Axyz Resultant acceleration
LAx Linear acceleration of vertical axis
LAy Linear acceleration of horizontal axis
LAz Linear acceleration of sideway axis
LAxy Linear acceleration of vertical plane
LAyz Linear acceleration of horizontal plane
LAxyz Linear acceleration of resultant acceleration
TA Tilt angle of the body trunk

Table 3
Categories of physical activities.

Dynamic Static Transitional
Walking Standing Stand-to-sit

Sitting Sit-to-stand
Lying face-up Sit-to-lie
Lying face-down Lie-to-sit

Falling

Six healthy volunteers (4 males, age: 33 ± 2.2 years, 1 female, age: 33 years), and a kid (female, age: 10 years) were
asked to wear the tri-axial accelerometer on their right waist. Each subject was asked to perform the activities described in
Table 3 in their own preferred style and pace. No specific instructions were given about how to perform the activities. All
activities were performed continuously for a single trial in a house which consisted of a corridor, a lounge and a bedroom.
The length of the corridor and the distance from a room to another is about 10–15 m. Each volunteer was asked to conduct
each experiment five times in their own pace.

5.2. Pre-processing and feature selection

Moving average filter is applied to remove high frequency noise. As shown in Table 4, thirteen features are extracted for
activity recognition. The slope of signal is calculated by using linear regression technique, which fits a straight line through
the signal. Mean Trend and Windowed Mean Difference introduced by [55] describes the trend of mean values over the
window. The window is divided into N sub-windows with no overlap. Then the mean of each sub-window, µi is calculated.
Mean Trend and Windowed Mean Difference are computed as follows.

|µT | =

N
i=2

|µi − µi−1| (4)

|µD| =

N
i=1

|µ − µi| . (5)

In this study, we have investigated the variants of the features by not taking the absolute difference in order to obtain the
trend (increasing or decreasing) of signal as follows.

µT , µD =


> 0 trend of signal is increasing
< 0 trend of signal is decreasing. (6)

All thirteen features are extracted from each of the thirteen signals. Therefore, a total of 169 features are extracted from
the acceleration, linear acceleration and tilt angle signals. Waikato Environment for Knowledge Analysis (WEKA) toolkit is
used to analyze the features [59].

Features are extracted from the acceleration and linear acceleration data over the sliding window. Najafi et al.
investigated the correlation of temporal postural duration with falling risk in elderly people [11], and it is found that
the average of postural duration is 2.95 s. Therefore, the initial window size is set to 3 s (150 samples). We have chosen
overlapping factor (of ) of 0.5 and expansion factor (ef ) of 0.5. The three classifiers are implemented asDecision Tree. Decision
Tree is chosen in this study due to its short execution and training time [57]. Furthermore, Decision Tree is found to give the
highest levels of classification accuracy according to [15]. ID3 algorithm is used to construct the Decision Tree classifiers [60].
The algorithm determines the threshold value that gives the best separation of samples to effectively distinguish between
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Table 4
Initial set of features for activity recognition.

Feature Key

Average Avg
Standard deviation Std
Skewness SK
Signal magnitude area SMA
Slope M
Absolute slope AM
Spectral energy E
Mean trend |µT |, µT
Windowed mean difference |µD|, µD
Maximum Max
Minimum Min

Table 5
Features of the decision tree classifier for UoA and SBHAR datasets.

UoA SBHAR

Transitional activity detector AM Ay |µD| Ay
Non-transitional activity classifier Avg LAyz , Avg Ay Avg LAxy , Avg Ay
Transitional activity classifier µT Ay , Avg Ay M Ay , Avg Ay

classes, in this case activities. This is achieved by finding the value of threshold that maximizes the information gain. The
implementation of the classifiers are described as follows.

For the Transitional Activity Detector, the signals (acceleration and linear acceleration) are segmented by the fixed initial
window size and divided into non-transitional activity and transitional activity signals. The thirteen features are calculated
using the segmented signals, and Relief-F is used to select the most relevant features against target activities. Relief-F is
chosen because of its speed and simplicity [61]. Then, ID3 algorithm is used to construct the Decision Tree classifier.

For training the Non-transitional (Dynamic/Static) Activity Classifier, all non-transitional activity signals are segmented
and divided into walking, standing, sitting, lying face-up and lying face-down classes. The thirteen features are calculated
using the fixed 3 s signal segments, and Relief-F is used to select the most relevant features against target activities. ID3
algorithm is used to construct the Decision Tree classifier.

For the Transitional Activity Classifier, all transitional activity signals are segmented and divided into stand-to-sit, sit-
to-stand, sit-to-lie, lie-to-sit and falling. Transitional activity signals are of different durations. Therefore, the size of the
window to calculate the features are varies from one signal to another. The algorithm expands the window by expansion
factor, ef which is 1.5 s (75 samples). Hence, the window size to calculate the features are 3 s (150 samples), 4.5 s (225
samples), 6 s (300 samples) etc. depending on the length of the signals. Relief-F is used to select the most relevant features
against target activities. Then ID3 algorithm is used to construct the Decision Tree classifier. The features of each classifier
for both datasets are given in Table 5. Notice that the selected features may be different due to varying sensor location and
types of activities.

During window expansion process, multivariate Gaussian distribution is used to determine the most effective window
expansion based on the probability density function. Furthermore, multivariate Gaussian distribution is also used to re-
perform classification if invalid activity transition is detected by the ATD. Two features from decision tree classifier (Avg
LAyz and Avg Ay) are used to model the distribution. µT Ay is not effective to capture the trend of the activity signal when
determining the most effective window expansion. An example of this scenario is shown in Fig. 12. As can be seen in Fig. 12,
µT Ay values ofWi,1 (−7.579) andWi,2 (−7.574) are almost the same, and the PDF value is increasing due to the flat trend of
the signal. As a result, the window continues expanding and the most effective window segmentation cannot be identified.
Therefore, M Ay is selected to model the distribution since it has the highest information gain after µT Ay during feature
selection process. Fig. 13 shows how the slope of fitted lines can effectively capture the trend of an activity signal. Three
lines, M1, M2 andM3 are fitted through the activity signal for eachwindow expansion. As can be seen, the slope of the fitted
line is decreasing as more samples (of other activity signal) are segmented by the window and as a result the PDF value is
decreasing.

5.3. Physical activity recognition

We have applied the proposed algorithm to develop a physical activity recognition system. The system is implemented
in MATLAB. The specification of the computer used was as follows: Intel Core i7 CPU 2.50 GHz, 12.0 GB RAM, Windows 7.
The average durations of data are 90 s and 337 s for UoA and SBHAR respectively. The average of running times are 260.26
and 894.73 ms. An internal (UoA) and public (SBHAR) [54] datasets are used to evaluate the proposed algorithm. SBHAR
dataset contains activity signals collected gathered from a smartphone inertial sensors (accelerometer and gyroscope).
30 subjects were asked to perform six basic activities. The position of the device is different to our experiment where



M.H.M. Noor et al. / Pervasive and Mobile Computing 38 (2017) 41–59 53

Fig. 12. The values of µT Ay for each window expansion.

Fig. 13. Fitted lines through acceleration Y signal for each window expansion.

Table 6
Average ± standard deviation duration and maximum duration of UoA and SBHAR datasets transitional activities.

Transitional activity UoA SBHAR
Average ± standard
deviation duration (s)

Maximum duration Average ± standard
deviation duration (s)

Maximum duration

Stand-to-sit 2.96 ± 0.61 4.60 3.41 ± 0.8 4.50
Sit-to-stand 2.34 ± 0.43 3.30 2.57 ± 0.5 3.70
Sit-to-lie 3.22 ± 0.76 5.30 4.12 ± 0.8 7.10
Lie-to-sit 3.01 ± 0.69 5.20 3.69 ± 0.7 7.30
Stand-to-lie N.A. N.A. 4.95 ± 1.4 8.40
Lie-to-stand N.A. N.A. 3.72 ± 0.8 11.20
Falling 2.99 ± 0.64 4.30 N.A. N.A.

it was attached to the front waist instead of right waist. The dataset includes six transitional activities: stand-to-sit, sit-
to-stand, sit-to-lie, lie-to-sit, stand-to-lie and lie-to-stand. Stand-to-lie is actually a sequence of other two transitional
activities (stand-to-sit and sit-to-lie). Similarly, lie-to-stand is actually a sequence of lie-to-sit and sit-to-stand activities.
The labels were defined between the end and the start of consecutive static activities. The experiments generated 5 h of
data. Table 6 shows the average, standard deviation and maximum durations of the transitional activities for both datasets.
We randomly chose 10 out of 30 data to train the model for both datasets. Then, the model was tested on the 30 data. Only
accelerometer signals are considered for the purpose of this research. Gupta andDallas (later referred to asGDapproach) [55]
have introduced new features to effectively recognize transitional activities. The features are mean trend, windowed mean
difference, variance trend, windowed variance difference, detrended fluctuation analysis coefficient, energy uncorrelated
and maximum difference acceleration. Naïve Bayes and k-NN are used to recognize the activities with a fixed window size
of 6 s. We implemented the GD approach using the Naïve Bayes classifier since it achieved better accuracy when classifying
transitional activities. We have compared their approach with the proposed adaptive sliding window approach in terms
of recognition accuracy. We also investigated the effectiveness of the integration of ATD in the classification algorithm.
Comparison with fixed sliding window approach is described in [62]. In comparison with [62], the multivariate Gaussian
distribution, rather than Gaussian naïve Bayes, is used tomodel the transitional activity signals, which allows the correlation
of multiple features and their relevance to be modeled. Furthermore, activity transition diagram is introduced to validate
the activity transition. As a result, the classification accuracy is improved.
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Table 7
Comparison of accuracy of activity recognition.

Recall (transitional) Recall (non-transitional) Overall recall

GD approach 88.7% 90.5% 89.9%
AW approach 93.6% 92.9% 93.0%
AW-TD approach 95.3% 95.4% 95.4%

Table 8
Confusion matrix of GD approach.

Walk St-Si Si-St Si-Li Li-Si Fall Stand Sit Li-up Li-dw Count Recall

Walk 183 10 3 0 0 3 0 0 0 0 199 92.0%
St-Si 3 67 0 11 0 0 0 0 0 0 81 82.7%
Si-St 8 0 69 0 3 1 0 0 0 0 81 85.2%
Si-Li 0 0 0 41 1 0 0 0 0 0 42 97.6%
Li-Si 0 0 1 0 30 0 0 0 0 0 31 96.8%
Fall 1 0 0 0 0 52 0 0 0 4 57 91.2%
Stand 7 0 2 0 0 0 50 0 0 0 59 84.7%
Sit 0 6 5 1 0 0 3 73 0 0 88 83.0%
Li-up 0 0 0 6 2 0 0 3 83 0 94 88.3%
Li-dw 0 0 0 0 0 0 0 0 0 98 98 100%

Table 9
Confusion matrix of AW approach.

Walk St-Si Si-St Si-Li Li-Si Fall Stand Sit Li-up Li-dw Count Recall

Walk 446 21 39 0 0 0 4 0 0 0 510 87.5%
St-Si 0 84 1 1 0 2 0 0 0 0 88 95.5%
Si-St 2 1 83 0 2 0 0 0 0 0 88 94.3%
Si-Li 0 0 0 56 0 0 0 0 3 0 59 94.9%
Li-Si 0 0 0 0 37 0 0 0 2 0 39 94.9%
Fall 4 0 4 0 0 62 0 0 0 0 70 88.6%
Stand 3 1 0 0 0 0 138 0 0 0 142 97.2%
Sit 2 1 2 0 0 0 6 215 0 0 226 95.1%
Li-up 0 0 0 12 0 0 0 0 223 0 235 94.9%
Li-dw 3 0 0 0 0 1 0 0 0 212 216 98.1%

6. Results and discussion

6.1. UoA: the University of Auckland dataset

Wecompute and tabulate the accuracy of the recognition from the values of true positive (TP), false positive (FP) and false
negative (FN) to evaluate the performance of the proposed approach. Recall or true positive rate is the number of windows
that are correctly classified and is given by

Recall = TP/ (TP + FN) . (7)

In addition to the recall, we calculated the precision and F-score metrics [49]. The additional metrics are given in Fig. 15.
Table 7 compares the recall measures of activity recognition system using adaptive sliding window approach with (AW-

TD) andwithout (AW)ATD against the existing GD approach. Tables 8–10 show the performance of the approaches bymeans
of confusionmatrices. The recognition accuracy of individual activities, transitional activities, non-transitional activities and
the overall accuracy are compared and analyzed. In general, GD approach performed reasonably well in classifying most
activities and achieved an overall accuracy of 89.9%, which is 5.5% lower than the proposed AW-TD approach. For the AW-
TD approach, classification accuracy is over 90% for every individual activity. For AWapproach, although the overall accuracy
is onlymarginally lower (2.4% less) comparedwith AW-TD, the standard deviation in classification accuracy is higher, which
are 3.4% for AW and 2.1% for AW-TD. This indicates AW approach is less accurate in some activities while AW-TD provides
good classification in every case.

As for classifying transitional activities, GD approach achieved 88.7% accuracy. Majority of the transitional activities can
be classifiedwith 91.2%–97.6% accuracy rangewith the exception of stand-to-sit whichwas poorly classifiedwith only 82.7%
accuracy. This reflects the fact that GD approach cannot handle activity signal with varying length as shown in Fig. 14. The
length of stand-to-sit signal in Fig. 14(a) is about 2 s (100 samples) while stand-to-sit signal in Fig. 14(b) is about 3.5 s (175
samples). As can be seen in Fig. 14(a), walking signal occupies almost half of the window, which leads to misclassification.
Conversely, AW-TD approach achieved recognition accuracy of 95.3% in transitional activities. It successfully detected the
activities and adapted the window size to accommodate activity signals of varying lengths. However, GD approach achieved
slightly higher accuracy, about 1.9% and 2.7%, in classifying Lie-to-Sit and Sit-to-Lie respectively than AW-TD approach.
This is because, in the experiments, AW-TD approach failed to detect transitional activity signal at the beginning and hence
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Table 10
Confusion matrix of AW-TD approach.

Walk St-Si Si-St Si-Li Li-Si Fall Stand Sit Li-up Li-dw Count Recall

Walk 484 10 11 0 0 1 4 0 0 0 510 94.9%
St-Si 0 87 0 1 0 0 0 0 0 0 88 98.9%
Si-St 2 1 84 1 0 0 0 0 0 0 88 95.5%
Si-Li 0 0 0 56 0 0 0 0 3 0 59 94.9%
Li-Si 0 0 0 0 37 0 0 0 2 0 39 94.9%
Fall 4 2 0 0 0 64 0 0 0 0 70 91.4%
Stand 2 3 0 0 0 0 137 0 0 0 142 96.5%
Sit 0 2 8 0 0 0 4 212 0 0 226 93.8%
Li-up 0 0 0 12 0 0 0 0 223 0 235 94.9%
Li-dw 0 0 2 0 0 2 0 0 0 212 216 98.1%

Fig. 14. Stand-to-sit signals with varying length.

adaptive slidingwindow is not applied. As a result, the window being processed is wrongly classified. It is also observed that
in a few experiments, the algorithm failed to determine the best window segmentation due to the over-expansion of the
window, which leads tomisclassification of the activity. Out of 210window expansion operations (adaptive windowmode),
only in 9 cases the windows are not correctly expanded. In total, 4.7% of transitional activity windows were misclassified by
AW-TD approach while GD approach misclassified 11.3% of transitional activity windows. This demonstrates that adaptive
sliding window segmentation is significantly more effective in classifying transitional activities.

Based on our previous observation, activities are very oftenmisclassified during state transitions due to ambiguous signal
characteristics caused by some minor motion behavior change. These can be clearly observed in dynamic behaviors such
as walking and falling, as well as standing which is the preceding activity of walking. In AW approach, these activities
(walking, falling and standing) are classified relatively poor with only an average of 91.1% accuracy. There is an additional
improvement to the overall recognition accuracy when the state validator is integrated into the activity recognition system
and acts as a feedback. The recognition accuracy of walking has seen significant improvement whereby more than half
of the misclassifications have been corrected. From the observation, the state validator successfully detected the invalid
transitionwhen awindow ismisclassified and thewindow classification is corrected by the classification system. The overall
recognition accuracy is also improvedwith lower standard deviation, in which recognition accuracy for all activities arewell
above 90%. However, recognition accuracy of sitting and standing has been decreased by 1.3% and 0.7% respectively. This is
because the windows were incorrectly re-classified by multivariate Gaussian distribution.

6.2. SBHAR: smartphone-based HAR dataset

Table 11 compares the recall measures of activity recognition system using GD, AW-TD and AW on the dataset. The
recognition accuracy of individual activities, transitional activities, non-transitional activities and the overall accuracy
are compared and analyzed. GD approach performed reasonably well in classifying the activities and achieved overall
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Fig. 15. Comparison of (a) Precision and (b) F-score between GD, AW and AW-TD for UoA dataset.

Table 11
Comparison of accuracy of activity recognition.

Recall (transitional) Recall (non-transitional) Overall recall

GD approach 88.2% 92.4% 91.9%
AW approach 90.3% 96.1% 95.7%
AW-TD approach 95.1% 96.6% 96.5%

accuracy of 91.9% which is 4.6% lower than AW-TD. For AW-TD approach, the classification accuracies for all activities are
above 90%, achieving overall recognition accuracy of 96.5% while AW approach achieved an overall recognition accuracy
of 95.7%. As for transitional activities, AW-TD performed better in classifying all transitional activities than GD approach,
achieving recognition accuracy of 95.1% which is 6.9% higher than GD. The overall recognition accuracy is improved when
state validator is integrated into the activity recognition system. Transitional activities have seen significant improvement
whereby the accuracy is increased by 4.8%. Tables 12–14 are the confusion matrices of GD, AW and AW-TD approaches.
Fig. 16 shows the comparison of precision and F-score between GD, AW and AW-TD.

7. Conclusions

In this paper, we propose a novel adaptive sliding window technique for segmentation of activity signal acquired from
tri-axial accelerometer to overcome the limitations of fixed-size sliding window used in existing works. In the proposed
approach the window size is adaptively adjusted based on signal information to achieve the more effective window
segmentation compared to fixed-size window approaches. In addition, we also proposed a transition model of physical
activity to improve classification accuracy. In this study, we demonstrated the performance of the approach on two datasets
inwhich one of them is a public dataset. The employeddatasetswere generated bydifferent subjectswith different styles and
pace. Itwas observed that the system can classify different activities performed by different subjectswith excellent accuracy.



M.H.M. Noor et al. / Pervasive and Mobile Computing 38 (2017) 41–59 57

Fig. 16. Comparison of (a) precision and (b) F-score between GD, AW and AW-TD for SBHAR dataset.

Table 12
Confusion matrix of GD approach.

Walk St-Si Si-St Si-Li Li-Si Stand Sit Lie Count Recall

Walk 1718 19 58 0 1 15 1 0 1812 94.8%
St-Si 5 87 1 6 0 0 0 0 99 87.9%
Si-St 1 2 80 0 10 0 0 0 93 86.0%
Si-Li 0 8 0 94 2 0 0 2 106 88.7%
Li-Si 1 0 7 0 90 0 0 2 100 90.0%
Stand 12 0 8 0 0 362 3 0 385 94.0%
Sit 5 7 2 3 8 11 276 12 324 85.2%
Lie 0 2 2 0 20 7 26 351 408 86.0%

Table 13
Confusion matrix of AW approach.

Walk St-Si Si-St Si-Li Li-Si Stand Sit Lie Count Recall

Walk 3341 48 68 0 0 1 11 0 3469 96.3%
St-Si 0 116 13 0 0 1 0 0 130 89.2%
Si-St 3 1 92 0 3 0 0 0 99 92.9%
Si-Li 0 10 2 120 0 0 0 1 133 90.2%
Li-Si 0 2 9 0 99 0 0 1 111 89.2%
Stand 2 1 4 0 0 1004 1 0 1012 99.2%
Sit 1 6 9 2 5 12 684 36 755 90.6%
Lie 1 3 5 1 5 16 1 897 929 96.6%
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Table 14
Confusion matrix of AW-TD approach.

Walk St-Si Si-St Si-Li Li-Si Stand Sit Lie Count Recall

Walk 3387 40 41 0 0 1 0 0 3469 97.6%
St-Si 1 127 0 1 0 1 0 0 130 97.7%
Si-St 1 1 94 0 3 0 0 0 99 94.9%
Si-Li 0 4 2 126 0 0 0 1 133 94.7%
Li-Si 0 2 5 0 103 0 1 0 111 92.8%
Stand 4 3 3 0 0 1000 2 0 1012 98.8%
Sit 3 12 11 8 8 9 685 19 755 90.7%
Lie 1 4 4 4 5 16 10 885 929 95.3%

The results showed that the proposed approach effectively segments activity signals resulting in better classification
accuracy in awide range of activities. The approach specifies small initialwindow size,which is able to segment dynamic and
static activity signals, and expandwindow size dynamically to accommodate transitional activity signal which is longer than
the current window size. The approach determines the optimumwindow size automatically as the signal is being evaluated.
As a result, the window contains the right information when performing classification. Moreover, the state validator, which
provides a feedback to the classification system, for activity recognition system is proposed. The state validator performs
validation of activity transition for every window classification based on the proposed activity transition model and notifies
the classification system to re-perform classification in the case an invalid transition is detected. The results showed that
AW-TD achieved 95.4% overall accuracy, which is 2.4% better than AW and 5.5% better than existing GD approach. AW-TD
achieved an overall accuracy of 96.5%, which is 0.8% better than AW and 4.6% better than GDwhen tested on SBHAR dataset.
The proposed algorithm could only expand the window size. We plan to explore effects of additional mechanism in which
the size of thewindow could be also reduced dynamically to capture short activity signals and further improve classification
accuracy. In future workwe plan to analyze the applicability of the algorithm for use in real-time scenarios. This will include
the detailed analysis of computational complexity and their effect on real-time properties of the algorithm.
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