Decision Tree with R

This lab manual is to demonstrate how to build and prune a Decision Tree in R. The package that we
will be using is Recursive Partitioning and Regression Trees (rpart).

To build a tree, use

rpart(formula, data, method, control)

formula a formula in the form of
outcome ~ predictorl + predictor2 + ... + predictorN

A predictor is an attribute.

data A data frame in which to interpret the predictors named in the formula
method Specifies a “class” or “anova” for classification or regression respectively.
control Optional parameters for controlling tree growth.

Building the tree

We will be using the diabetes dataset. The dataset contains 11 attributes (columns) as follows.

e age: Age of the patient

e sex: Gender of the patient

e bmi: Body mass index

e bp: Blood pressure

e S1,S2,S3,54, S5, S6: Six blood serum measurements

e Diabetes: A quantitative measure of disease progression one year after baseline

Download the diabetes dataset. Load the package as follows.
> install.packages("rpart™)
> Tlibrary(rpart)
> install.packages('"Metrics")
> Tlibrary(Metrics)
Load the data into R.
> diabetes <- read.csv("diabetes.csv'")
To view the data frame
> View(diabetes)
Let’s examine the columns in the data frame.

> str(diabetes)

CDS501 Principles & Practices of Data Science & Analytics

https://cran.r-project.org/web/packages/rpart/index.html

"data.frame’: 442 obs. of 11 wvariables:

£ age : hum 0.03308 -0.00188 0.0853 -0.08906 0.00538 ...

f sex : num 0.0507 -0.0446 0.0537 -0.0446 -0.0446 ...

£ bmi D num 0.0617 -0.05315 0.0445 -0.0116 -0.0364

£ bp :onum 0,02187 -0.02633 -0.00567 -0.03666 0.02187 ...
£ s1 D num -0.04422 -0.00845 -0.0456 0.01219 0.00393 ...

£ s2 D num -0.0348 -0.0192 -0.03342 0.025 0.015%6 ...

£ =3 D num -0.0434 0.07441 -0.033236 -0.03604 0.00814 .

§ =4 D num -0.00259 -0.03949 -0.00259 0.03431 -0.00259 ...
£ s5 D num 0.01991 -0.06833 0.00286 0.02269 -0.03199 ...

§ s6 Donum -0.01765% -0.0922 -0.02593 -0.00936 -0.04664 ...
£ diabetes: num 131 75 141 206 135 97 138 &3 110 310 ...

We would like to predict if a patient diabetes progression given the attributes. As we can see column
“diabetes” is in num (continuous value).

Then, we split the data into training dan test sets, in a ratio of 70:30. The training set is used for
training and creating the model. The test set is to evaluate the accuracy of the model.

> sample_ind <- sample(nrow(diabetes), nrow(diabetes)*0.7)
> train <- diabetes[sample_ind,]
> test <- diabetes[-sample_ind,]

Assuming we want to predict the patients’ diabetes given all the attributes. Now, let’s build a
regression tree by calling the rpart function. To build a tree, we begin with a small cp or cp equals 0.
Certain attributes can be specified as follows e.g. diabetes ~ age + sex + bmi + bp + sl.

> reg_tree <- rpart(diabetes ~ ., train, method="anova",
control=rpart.control(cp=0))

We can plot the decision tree using plot() and text() functions. The cex argument is to specify the
size of the text.

> plot(reg_tree)
> text(reg_tree, cex=0.5)

Now, let’s evaluate the tree by performing prediction on the test set. The argument “type” is to
specify the character string denoting the type of predicted value returned. If the rpart object is a
classification tree, then the default is to return prob predictions, a matrix whose columns are the
probability of the first, second, etc. class. Otherwise, a vector result is returned.

> test$pred <- predict(reg_tree, test)
> rmse(test$diabetes, test$pred)

As we can see, the root mean squared error of the prediction is 73.6882. Let’s prune the tree to
reduce the error.

CDS501 Principles & Practices of Data Science & Analytics

Pruning the tree

There are types of pruning: pre-pruning and post-pruning.

Pre-pruning or also known as early stopping criteria can be performed by specifying these three
parameters.

maxdepth: This parameter is used to set the maximum depth of a tree. Depth is the length of the
longest path from a Root node to a Leaf node. This parameter will the stop the tree building when
the depth is equal to the value set for maxdepth.

minsplit: This parameter is used to set the minimum number of samples that must exist in a node for
a split to be attempted. For example, if minsplit is set to 5, then a node can be further split when the
number of samples is more than 5.

minbucket: This parameter is used to set the minumum number of samples that can be presentin a
node. For example, if minbucket is set to 5, then a node should have at least 5 samples. We should
also take care of not overfitting the tree by specifying too small value of minbucket. If only one of
minbucket or minsplit is specified, the code either sets minsplit to minbucket*3 or minbucket to
minsplit/3, as appropriate.

Let’s build the classification tree by specifying the parameters. Then we evaluate the tree using the
test set.

> reg_tree_es <- rpart(diabetes ~ ., train, method="anova",
control=rpart.control (cp=0, maxdepth=6, minsplit=70))

> test$pred2 <- predict(reg_tree_es, test)
> rmse(test$diabetes, test$pred2)

Use the plot() function to display the tree. We can see that the error has been reduced to 69.9848.

CDS501 Principles & Practices of Data Science & Analytics

The second type of pruning is post-pruning. The method calculate the cost of complexity of building
the tree. Then, a simpler (pruned) tree is selected based on the cost complexity (cp) parameter. To
display the cp table of the tree, use printcp() function as follows.

> printcp(reg_tree)

Regression tree:
rpart{formula = diabetes ~ ., data = train, method = "anova",
control = rpart.control{cp = 0))

variables actually used in tree construction:
[1] age bmi bp =2 =53 =4 s35 s6 sex

Root node error: 17959216/309 = 5812

n= 309
CP nsplit rel error xerror xstd
1 0.3020824 0 1.00000 1.00453 0.058033
2 0.0944334 1 0.69792 0.80219 0.056212
3 0.0707153 2 0.60348 0.73697 0.033715
4 0.0246859 3 0.53277 0.61402 0.044772
5 0.0180307 4 0.50808 0.61433 0.043851
& 0.0166934 5 0.49005 0.61347 0.043695
7 0.0124328 6 0.47336 0.61201 Q.0440862
§ 0.0122479 7 0.46093 0.62760 0.045525
9 0.0107084 & 0.44868 0.63985 0.046721
10 0.0104724 9 0.43797 0.64136 0.046411
11 0,0097205 140 0.42750 0,.653188 0.046704
12 0.0092005 11 0.41778 0.65141 0.0466653
13 0.0087960 12 0.40858 0.65031 0.046956
14 0.0075866 13 0.39978 0.66134 0.048851
15 0.0074964 15 0.38461 0.67688 0.049982
16 0.0068864 16 0.37711 0.67250 0.049690
7 0.0049056 17 0.37022 0.68538 0.050620
18 0.0048798 13 0.36532 0.69478 0.051973
19 0,0042703 19 0.36044 0,69030 0.051830
20 0.00373358 20 0.35817 0.69033 0.0517153
21 0.0031197 22 0.34870 0.69510 0.051793
22 0.0030000 23 0.34558 0.69080 0.051855

CDS501 Principles & Practices of Data Science & Analytics

We can also display the cp value against the cross-validated error using plotcp() function.
> plotcp(reg_tree)

size of tree

12 3 4 56789 11 13 16 18 20 23

X-val Relative Error

1 1 1 1 1 1 T 1 1T 1T T 1 T T T T T T T T 1
Inf 0.082 0.017 0011 0.01 0009 00072 0.0046 0

cp

The relative error (rel error) is 1 — R?, similar to linear regression. The xerror is cross-validated error
and xstd and standard deviation of the cross-validated error.

Here, we want the cp value (with a simpler tree) that minimizes the xerror.

> bestcp <-
reg_tree$cptable[which.min(reg_tree$cptable[, "xerror"]),"crP"]

Now, using the best cp value, we build the tree using rpart by specifying the best cp value. The
evaluate the tree using the test set.

> reg_tree_prune <- rpart(diabetes ~ ., train, method="anova",
control=rpart.control (cp=bestcp))

> test$pred3 <- predict(reg_tree_prune, test)
> rmse(test$diabetes, test$pred3)
As we can see, the error has been further reduced by about 0.6.
We create a postscript of the tree as follows.

> post(reg_tree_prune, file = "reg_tree_prune.ps", title = "Regression
tree for Diabetes dataset")

The created ps file can be used to generate a pdf file of the tree.

CDS501 Principles & Practices of Data Science & Analytics

	Decision Tree with R
	Building the tree
	Pruning the tree

