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Abstract
Human activity recognition has gained interest from the research community due to the
advancements in sensor technology and the improved machine learning algorithm. Wearable
sensors have become more ubiquitous, and most of the wearable sensor data contain rich
temporal structural information that describes the distinct underlying patterns and relation-
ships of various activity types. The nature of those activities is typically sequential, with each
subsequent activity window being the result of the preceding activity window. However, the
state-of-the-art methods usually model the temporal characteristic of the sensor data and
ignore the relationship of the sliding window. This research proposes a novel deep temporal
Conv-LSTM architecture to enhance activity recognition performance by utilizing both tem-
poral characteristics from sensor data and the relationship of sliding windows. The proposed
architecture is evaluated based on the dataset consisting of transition activities—Smartphone-
Based Recognition of Human Activities and Postural Transitions dataset. The proposed
hybrid architecture with parallel features learning pipelines has demonstrated the ability
to model the temporal relationship of the activity windows where the transition of activities
is captured accurately. Besides that, the size of sliding windows is studied, and it has shown
that the selection of window size is affecting the accuracy of the activity recognition. The
proposed deep temporal Conv-LSTM architecture can achieve an accuracy score of 0.916,
which outperformed the state-of-the-art accuracy.

Keywords Activity recognition · Deep learning · LSTM · Temporal model

1 Introduction

The rapid development ofmachine learning techniques and ubiquitous computing has spurred
the interest from academia to analyze and interpret sensor data to extract knowledge from
the omnipresent sensor over the previous few decades. The growing research community is
interested in human activity recognition (later referred to as activity recognition) because of its
tremendous usefulness in health monitoring, medical assistance, entertainment, and personal
health tracking services. For instance, the real-time feedback from the activity detection
system allows the healthcare professional to quickly monitor patients who require close
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monitoring, especially thosewith bodymotion-associateddiseases.Most of the research seeks
to improve and boost the algorithm’s accuracy, efficiency, and execution time by applying
pattern recognition on the raw sensor data to extract valuable information related to the
current activity for the user.

Activity recognition is one of several disciplines that utilize machine learning approaches
to detect hidden patterns in sensor data to classify human activities. Thanks to the advance-
ments in technology such as computer systems and power accessible today, the approaches
have steadily improved. At the same time, the improved learning algorithm approaches also
pave the way for the enhancement of activity recognition research. Traditional machine
learning approaches, such as the Support Vector Machine (SVM) or Hidden Markov Model
(HMM), have been widely utilized in many activity recognition-based studies. The underly-
ing characteristics of the dataset must be manually retrieved using various feature extraction
methods such as principal component and linear discriminant analysis [1], wavelet transform
[2], homomorphic analysis [3] and local binary pattern [4], and fed into the machine learning
algorithms for the learning algorithms to understand the patterns in the data. The disadvantage
of the traditional machine learning approach is that researchers must demonstrate possession
of the vast knowledge of the domain, which implies that the researchers must have a thorough
grasp of the behavior and characteristics of the time-series data for better feature extraction.
However, the process of feature extraction is still very susceptible to human mistakes.

Today, the learning algorithm has progressed from manual feature extraction to fully
automatic feature learning by utilizing deep learning methods. Deep learning can extract fea-
tures directly from data without human intervention. In recent years, many researchers have
demonstrated and proved that the deep learning method is satisfactory [5]. One of the most
important aspects of successful deep learning models is the network architecture. As deep
learning methods like convolutional neural network (CNN) and recurrent neural network
(RNN) become more sophisticated and refined in activity recognition, several researchers
have advocated leveraging both methods. CNN is better at recognizing long-term repetitive
activities, while RNN-based networks such as long short-termmemory are better at recogniz-
ing short, natural-ordered activities [6]. By combining both main and mature deep learning
methods, one may leverage the strengths of both methods to improve activity recognition
performance.

In activity recognition, the activity signal is typically divided into segmentations or known
as windows of equal size for subsequent feature extraction and classification. Typically, the
window size is set based on hardware limitations and experience. Small window size would
slice the activity signal into multiple separate segmentations. Thus, the segmentation lacks
the information for activity recognition. On the other hand, large segmentation could contain
multiple activity signals, confusing the classification model. In both cases, the segmentations
do not have the optimal information of the activity signals, which would lead to misclassi-
fication. Another important property of the window segmentation is that they are inherently
sequential due to the nature of human activities, whereby an activity window can be fol-
lowed by a particular set of activity windows. For example, a window classified as standing
is followed by either a standing window or a walking window only. However, the sequence
of activity windows is often ignored in the development of classification models. The devel-
oped classification models consider only the current window which is the segmentation to
be classified. Such models do not leverage the fact that the sequence of activity windows
is inherently sequential due to the nature of human activities. Therefore, this work aims to
develop a hybrid deep learning model that combines the strength of CNN and RNN to extract
the salient feature representation and capture the temporal information in the activity data.
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Unlike previous hybrid models where the input is a single-window segmentation, the pro-
posed model accepts a sequence of activity windows to model the dependencies between the
windows. Each activity window is processed by a separate stream that extracts the local win-
dow features. The window features are then concatenated to become a sequence of window
features. Then, the dependencies of the features aremodeled to capture a better representation
of the data to improve the model generalization.

The remainder of this paper is organized as follows. Section 2 reviews the related works.
In Sect. 3, we present the proposed methodology that consists of data collection and pre-
processing, the proposed hybrid model and the implementation details. Section 4 presents the
experimental results and their discussion. Finally, the conclusions are presented in Sect. 5.

2 RelatedWorks

Deep learning method has been widely implemented to overcome the limitation of machine
learning. Deep learning can extract features automatically, which leads to lesser human effort.
Numerous deep learning models have been proposed for activity recognition, including CNN
models, RNN models and hybrid CNN and LSTM models.

2.1 CNNModels

In [7], a CNNmodel is designed to take in raw accelerometer data in three-dimensional (3D)
directly without any complex pre-treatment. Before feeding to the first convolution layer, the
input is pre-processed with the sliding windowmethod before normalization is applied to the
accelerometer data. The normalized data is then fed into 1D convolution and max-polling
layer. The author proposed to perform validation on the model based on the benchmark
WISDM dataset. The experimental result indicates that the proposed model can achieve high
accuracy while maintaining low computation costs. A multiple channel CNN was presented
as a solution to the problem of activity recognition in the context of exercise programmes
[8]. A self-collected dataset comprised of 16 activities from the Otago exercise program is
captured and used in this experiment.Multiple sensors are placed across body parts to capture
the raw inertia data for various activities which each sensor will be fed into a separate CNN
channel. The results from all sensors after CNN’s operation will be compared individually to
determine the best location to place sensors for better lower-limb activity detection. In this
experiment, the authors also conclude that multiple sensor combinations can produce better
results than a single sensor source.

ADeepHumanActivity Recognitionmodel is proposed, which converts themotion sensor
data into a spectral image sequence before feeding these images into two independently
trained CNN models [9]. Each CNN model takes in the image sequences that are generated
from the accelerometer and gyroscope. The outputs of the trained CNNs are then fused
to predict the final class of human activity. In this experiment, the public dataset Real-
world Human Activity Recognition (RWHAR) is used. This dataset contains eight activities
which are climbing stairs down and up, lying, standing, sitting, running/jogging, jumping
and walking. The proposed model can achieve an overall F-score of 0.78 for both static
and dynamic activities and 0.87 for dynamics activities. The author also claimed that this
model is capable of handling image input directly. Themodel’s generalization is encouraging;
however, the recognition accuracy is not comparable with the other benchmark deep learning
model. In [10], three strategies are proposed to exploit the temporal information of a sequence

123



M. H. Mohd Noor et al.

of windows. The first strategy is to compute the average of the windows which will be used
as input to the CNN model. In the second strategy, the sequence of windows is fed to a
concurrent CNN, and the activity class is determined based on the average scores. The final
strategy is similar to the second strategy. However, the learned features are combined using
global average pooling layer to produce the final prediction.

Instead of a single classifier of CNN, an ensemble of CNN has been proposed to improve
the accuracy of activity recognition. Zhu et al. [11] proposed a human activity recogni-
tion framework based on CNN using a fusion of various smartphone-based sensors such as
accelerometer, gyroscope, and magnetometer. The proposed framework is an ensemble of
two different CNN models whereby the first CNN is trained to predict the activity classes
while the second CNN is trained to focus on the activity classes that have a high number of
misclassification. The output of individual CNNmodels is then combined usingweighted vot-
ing to predict unknown activities. The experimental result indicates that this proposed model
can achieve up to 0.962 in terms of accuracy. Zehra et al. [12] also proposed an ensemble
model consisting of three different CNN models. The ensemble model averages the three
CNNmodels’ outputs to produce the final prediction. The authors evaluated the performance
of each CNNmodel before ensembling each CNNmodel for overall performance validation.
The experimental result indicates that the performance of the ensemble model is better than
the three CNNmodels. The ensemble model achieved an accuracy of 0.940. This experiment
shows that the ensemble learning model can generalize how the learning effect of the weak
learner could be boosted and improve the overall model. In [13], a two-channel CNN model
is proposed for activity recognition. The proposed model leverages the frequency and power
characteristics extracted from sensor signals to improve recognition accuracy. Themodel was
validated on a public UCI-HAR dataset and demonstrated an accuracy of 0.953. The down-
side of this method is that it requires the extraction of specific features to improve activity
recognition from sensor data. The performance of CNN model is enhanced by integrating
the attention mechanism module to determine the relevance of the features [14]. To extract
the local features, the three acceleration channels are fed to three concurrent convolutional
layers with different filter sizes. Then the attention mechanism computes the contribution
of the features to select the relevant features. The model was validated on a public WISDM
dataset and demonstrated an accuracy of 0.964.

Based on the aforementioned studies, it can be observed that most implementations did
very well at classifying the activities. They could automatically extract the salient features,
which leads to good classification performance. However, the temporal information of the
sensor data is not leveraged for activity classification.

2.2 RNN-BasedModels

Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) are two popular RNN
variations. Several studies employ the RNN architectures to tackle the activity recognition
problem. Chen et al. [15] presented a feature extraction approach based on LSTMs for
activity recognition. In the study, the accelerometer data is segmented into a sequence of
windows of size N , and the three acceleration channels are individually processed. Thus,
three LSTMs are used to perform feature extraction on the windows. Following the LSTMs,
a concatenation operation is performed to produce a feature vector which will be fed to a
softmax classifier. WISDM dataset is used to validate the proposed model. The experimental
results show that the proposed model achieved an accuracy of 0.921. A similar work is
reported in [16], whereby two layers of LSTMs are proposed to perform feature extraction
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on accelerometer and gyroscope data. The results show that the proposed model achieved
an average accuracy of 0.920. Furthermore, it has been shown that batch normalization can
attain the same accuracy with nearly four times fewer training epochs.

Other than employing the LSTM to process the sensor data directly, several models of
ensemble LSTM networks have been proposed to improvise the accuracy of activity recog-
nition. The performance of ensembles of deep LSTM is verified and reported in [17]. The
authors built diverse base learners using LSTM and the predictions of the base learners
are combined via average operation to obtain a more robust and improvised classification
performance. The authors also proposed a modified training procedure such as random sam-
pling with varying lengths of the sensor data, and sample-wise model evaluation is performed
during inference.The authors validated the proposedmodel on three different datasets:Oppor-
tunity, PAMAP2, and Skoda. The results show that the ensemble model achieved an accuracy
of 0.726, 0.854 and 0.924 forOpportunity, PAMAP2, and Skoda respectively. Also, the exper-
imental results indicate that the ensemble model performs better than a single classifier. Li
et al. [18] proposed an ensemble model using LSTMs to accept input segmentation with
different sizes to model the underlying temporal patterns at various degrees of granularity.
The predictions of the LSTMs are combined via element-wise multiplication to produce the
final prediction. The experimental results show that the proposed model achieved an average
accuracy of 0.961.

Mahmud et al. [19] proposed a multi-stage LSTM-based model to process multimodal
sensor data for activity recognition. This proposed model consists of three key components,
which are temporal feature extractor, temporal feature aggregator and global feature opti-
mizer. The temporal feature extractor comprises two layers of LSTM to extract temporal
features from each sensor data. The temporal feature aggregator aggregates the temporal
features, taking into account both the time-axis and the feature-axis to preserve the tempo-
ral relationship. The global feature optimizer consists of three layers of LSTM to extract
global features from the aggregated temporal features. The experimental results show that
incorporatingmultiple sensors into the proposedmodel outperformed the single sensor-based
model.

AlthoughRNNnetworks have been shown capable ofmodeling the temporal characteristic
of sensor data, it is generally not performing well in extracting local features from sensor
data. Therefore, there is a need to combine CNN with LSTM to exploit the strength of both
deep learning methods.

2.3 Hybrid Models

In recent years, hybridization of CNN and RNN networks has been experimented with to
improve the performance of activity recognition. Various hybrid deep learning models have
been proposed in previous studies. But the focus of this study is the hybridmodels of CNNand
RNN. Ordóñez & Roggen first proposed a novel DNN framework for activity recognition,
consisting of four convolutional layers, followed by two recurrent layers and a softmax
layer as a classifier [20]. The convolutional layers are used as a feature extractor to produce
the feature representation of the sensor data. In contrast, the recurrent layers are used for
modeling the temporal dynamics of the feature maps. This proposed framework employs the
sliding window approach to segment the time series data. The proposed model is validated
on two popular public datasets, which are OPPORTUNITY and SKODA. The accuracy for
OPPORTUNITY and SKODA are 0.930 (for modes of locomotion with no null class) and
0.958 respectively.
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Mekruksavanich and Jitpattanakul [21] proposed a similar hybrid CNN-LSTM model.
In the study, the authors added Bayesian Optimization to fine-tune each LSTM and CNN
network parameter. The author evaluated the proposedmodel usingWISDMpublic data. The
result of the experiments indicates that the proposed model outperformed the other baseline,
achieving an average accuracy and F-score of 0.962 and 0.963 respectively. A similar CNN-
LSTM model for activity recognition is reported in [22]. However, the authors proposed
to wrap the convolutional and pooling layers with a Time Distributed wrapper to maintain
its temporal integrity for the LSTM layers. The input data is reshaped to 3D as required
by the Time Distributed wrapper. The proposed model achieved an accuracy of 0.921 and
0.991 for iSPL and UCI-HAR datasets respectively. Thus, it is concluded that the proposed
model outperformed other deep learning models that simply use the raw sensor data as input.
Another similar model is reported in [23]. The input dimension is first expanded to obtain
heterogeneous data and the data is then fed to the proposed model. The proposed model
achieved an accuracy of 97.65% on the UCI-HAR dataset.

Wang et al. [24] proposed a similar CNN-LSTM architecture in which the focus is to
model the transition of the activities of the window sequence. To achieve this, the author
proposed to treat the sensor data as an image-alike 2D array. The image alike array data is
fed into a three-layer CNN network for automatic feature extraction to obtain the feature
vector. The feature vector from the previous layer is then fed into LSTM layers to model the
relationship between time and action sequence. The proposed model is validated using the
SBHAPT dataset and the experimental results show that the proposed achieved an accuracy
of 0.959. The limitation of this proposed model is the pre-requisite of treating the signal data
as image-like, which incurs an additional pre-processing step to convert the raw real-time
signal into image-like form before feeding into the proposed model.

Singh et al. [25] proposed a deep neural network architecture that consists of CNN, LSTM
and a self-attention mechanism. The CNN and LSTM layers extract spatio-temporal features
from multiple time-series data, and the self-attention layer is utilized for training on the
most significant time point. The proposed model is validated with different data sampling
strategies on six public datasets, which are mobile health (MHEALTH), USC human activity
dataset (USC-HAD), Wireless Sensor Data Mining (WISDM), UTD Multimodal Human
Action Dataset (UTD-MHAD2), Wearable Human Activity Recognition Folder (WHARF),
andUTDMultimodalHumanActionDataset (UTD-MHAD1). The proposedmodel achieved
an accuracy of 0.949, 0.909, 0.904, 0.898, 0.824 and 0.580 for the six datasets above respec-
tively. The proposed model also indicates that the self-attention mechanism significantly
improvises the performance of the model. The results show that the proposed architecture
has significantly outperformed the state-of-the-art methods. However, the experiments did
not involve transitional activities such as stand-to-sit, sit-to-stand and sit-to-lie.

Abdel-Basset et al. [26] presented a supervised dual-channel model comprised of LSTM
and an attention mechanism. The long-term temporal representations of the sensor data
are modeled by the LSTM. An advanced residual network, on the other hand, effectively
extracts hidden characteristics from high-dimension sensory input. The attention mechanism
is applied on LSTM to further improvise on the temporal fusion performance. The proposed
model for multichannel spatial fusion also includes a novel adaptive-squeezing CNN. The
proposedmodel is evaluated on two benchmark datasets: UCI-HAR andWISDM. The results
show that the proposed model outperforms existing state-of-the-art models by achieving an
accuracy of 0.977 and 0.989 for UCI-HAR and WISDM respectively.

Xia et al. [27] proposed a hybrid deep learning architecture that is made up of two layers
of LSTM followed by convolutional layers. The global average pooling layer (GAP) is
applied instead of the fully connected layer after the convolutional layers and followed with
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a batch normalization layer (BN). The authors found that GAP could help to reduce the
model parameters while the batch normalization layer helps to speed up the convergence.
The proposed model is validated on three different datasets: OPPORTUNITY, WISDM and
UCI-HAR, achieving an accuracy of 0.927, 0.958 and 0.958.

Nafea et al. [28] proposed a novel hybridmodel to extract the temporal cues from the sensor
data. The proposed model consists of a two-stream of CNN and BiLSTM. The features from
both streams are then concatenated and fed to a fully-connected layer for classification. The
proposedmodel is evaluated onWISDM andUCI-HAR datasets and the results show that the
proposedmodel outperformed the state-of-the-artmodels, achieving an accuracy of 0.985 and
0.971 respectively. The authors claim that CNN-BiLSTM is an efficient solution to extract
spatial and temporal features. Similar work is reported in [29], whereby a novel hybrid model
is proposed to extract local features and global temporal relationship of the features. The
proposed model consists of a two-stream of convolutional layers and LSTM-based attention
mechanism modules. The proposed model is evaluated on WISDM, UCI-HAR, Opportunity
and PAMAP2 datasets. The results show that the proposed model outperformed the state-of-
the-artmodels, achieving an average accuracy of 0.975. Shi et al. proposed a similarmodel for
WiFi-based activity recognition. The proposedmodel consists of a series of convolutional and
max-pooling layers followed by a bidirectional LSTM and an attention mechanism module.
The activities considered in the experiments are standing, sitting, walking, running, stand up
and sit down. The results show the proposed model significantly improves the recognition
accuracy.

Gao et al. [30] proposed a novel hybrid model to capture both the channel-wise and
temporal dependencies of the sensor data. The segmented sensor data is fed to convolutional
layers to extract the feature representation. The features is then fed to a squeeze-and-excitation
module which consists of channel attention submodule and temporal attention submodule
to model the dependencies. The channel attention submodule consists of a two-stream of
max-pooling layer and average pooling layer, and each pooling layer is followed by a fully-
connected layer with ReLU activation function. The outputs of the fully-connected layers are
then concatenated via the temporal axis and converted to probabilities usingSigmoid function.
The temporal attention submodule has similar two-stream network. But the concatenation
is performed along the channel index. The proposed model is evaluated on four different
datasets: WISDM, UniMiB SHAR, PAMAP2 and Opportunity. The experimental results
show the proposed model achieved better performance than the existing models.

Based on the past literature, hybrid models can achieve a satisfactory result. However,
several limitations are posed by the aforementioned studies. First, the studies do not exploit
the temporal information of the sequence of activity windows. Also, most of the studies
except [24] consider only basic activities such as walking, standing and sitting and ignore the
transitional activities such as stand-to-sit, sit-to-stand which have a much shorter duration
and less occurrence. Therefore, this paper presents a hybrid deep learning model consisting
of three parts: feature learning pipelines, sequential learning module and activity classifier.
The feature learning pipeline consists of a concurrent feature extraction module that accepts
a sequence of activity windows to learn feature representation of the windows, while the
sequential learning module model the temporal dependencies between the windows. The
temporal features produced by the sequential learning module are fed to the classifier for
activity recognition.
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3 ProposedMethodology

3.1 Data Collection and Pre-processing

The dataset that is used in this study is the Smartphone-Based Recognition of Human Activ-
ities and Postural Transitions (SBHAPT) dataset [31]. The dataset is publicly available from
UCI and is widely used by numerous researchers to validate their architecture. The rationale
of the dataset selection is due to its data collection method whereby the subjects performed
the activities continuously. Thus, the dataset contains not only the basic activities, but also
the transitions between two activities. As the aim of this study is to exploit the sequence of
activity windows, this characteristic becomes a critical component to evaluate our proposed
model. To the best of our knowledge, this is the only public dataset that contains basic activ-
ities as well as their transitions. The dataset was collected from 30 subjects and each subject
performed the protocol twice. During the data collection, a smartphone integrated with a
tri-axial accelerometer and tri-axial gyroscope is attached to the waist of the subjects. The
sensor data is generated at a constant rate of 50 Hz.

A total of 12 activities are captured in this dataset, including the basic activities and
the postural transitional activities. Among the six basic activities, three of them are static
activities such as standing, sitting, lying and the other three are dynamic activities such as
walking downstairs, walking upstairs and walking. The transitional activities are sit-to-lie,
lie-to-sit, stand-to-sit, stand-to-lie, lie-to-stand, and sit-to-stand. Note that stand-to-lie and
lie-to-stand consist of two transitional activities. For example, the stand-to-lie is composed
of stand-to-sit followed by sit-to-lie. However, the original authors of the dataset annotate
the activities as a single transitional activity. Table 1 lists the activities and their number of
samples. The sensor data is normalized to zero mean and unit variance. Then the sensor data
is segmented using the fixed-size sliding window method. An activity window may contain
samples from two activity classes. This is due to the nature of time-series data as the subject
transition from one activity to another. Therefore, the activity windows are labeled according
to the majority samples within the window. For example, if the size of the window is 100

Table 1 Distribution of sensor
data (number of activity samples) ID Activity Number instances Percentage (%)

A1 Walk 122,091 14.97

A2 Upstairs 116,707 14.31

A3 Downstairs 107,961 13.24

A4 Sit down 126,677 15.53

A5 Stand 138,105 16.93

A6 Lie 136,865 16.78

A7 Stand to sit 10,316 1.26

A8 Sit to stand 8029 0.98

A9 Sit to lie 12,428 1.52

A10 Lie to sit 11,150 1.37

A11 Stand to lie 14,418 1.77

A12 Lie to stop 10,867 1.33

Total 815,614 100.00
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samples, and 55 samples belong to class A and the remaining samples belong to class B. The
window is labeled as class A.

3.2 Proposed Deep Temporal Model

The block diagram of the proposed model is as illustrated in Fig. 1. The time-series data
generated by the sensor is segmented with the sliding windowmethod. Each activity window
contains sensor data that lasted for a finite amount of time. The proposed model accepts a
sequence of activity windows as input. The window sequence contains K previous activity
windows in addition to the current window to be predicted. The K previous windows provide
additional information to the model in predicting the current window. It is worth noting that
in the figure, the sensor data is segmented with the sliding window with no overlapping.
However, overlapping segmentation is typically used and has been shown to achieve better
recognition accuracy as reported in previous studies [32]. Furthermore, the overlapping slid-
ing window increases the number of segmentations, improving the generalization of the deep
learning models.

Fig. 1 The block diagram of the
proposed hybrid model
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Table 2 The parameters of the feature learning pipeline (segmentation size equals 128)

Layer Kernel or pool size Stride Activation Output shape

Input 128 × 6

1D Conv 2 1 tanh 128 × 8

Max pooling 2 1 127 × 8

Dropout (prob � 0.5)

1D Conv 2 1 tanh 127 × 8

Max pooling 2 1 126 × 18

Dropout (prob � 0.5)

1D Conv 2 1 tanh 126 × 36

Max pooling 2 1 125 × 36

Dropout (prob � 0.5)

The first part of the proposedmodel is the concurrent feature learningmodule that acquires
the sequence of the activity windows. Each feature learning pipeline is composed of convo-
lution and pooling operations with dropout regularization. The convolution layers are used to
extract low- and high-level features in a hierarchical manner. The hyperbolic tangent (tanh)
activation function is selected based on the experiments that have been conducted. The pool-
ing layer reduces the size of the feature maps after each convolution layer which yields a
reduction in the computational complexity. The maximum pooling with pool size equals 2
and stride equals 1 is used because it has been shown to be effective for sensor-based activity
recognition [24]. The dropout regularization is applied after the maximum pooling layer to
reduce overfitting and improve the model generalization. Table 2 lists the parameters of the
feature learning pipeline.

As can be shown in Fig. 1, each feature learning pipeline concurrently processes different
activitywindows and produces the localwindow features. Thewindow features are the feature
representation of the activity windows that are segmented at different times. These window
features are concatenated to form a single window feature before being used as input to the
sequential learning module. The concatenation of the window features represents the feature
representation of the activity windows segmented at different times. Thus, the sequential
learning module models the dependencies of the activity windows. Assuming the feature
maps of the feature extractor is denoted by xn where n denotes n th window or the window
to be predicted. The concatenation of the window features or window sequence is given as
follows:

z � [
xn−K , . . . , xn−1, xn

]
(1)

where K is the number of previous windows being used for predicting the window n. The
size of the window sequence vector is given as follows:

T � L × (K + 1) (2)

where L is the size of the single-window feature.
The window sequence is then fed to the sequential learning module. The sequential learn-

ing module aims to model the dependencies between the window features. Previous works
have shown that LSTM is effective in modeling time series data for activity recognition.
Therefore, the LSTM network is adopted as the sequential learning module. LSTM networks
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have the form of a chain of repeating neural network-based modules known as LSTM cell.
Each cell accepts a single feature as input; thus, the number of LSTM cells is determined
by the size of the window sequence vector. This input is processed, and an output is pro-
duced which will be fed to the next cell. In this way, the temporal information in the window
sequence is captured for classification.

An LSTM cell consists of several gating units that control the flow of information from
one LSTM cell to another LSTM cell. The first gate is called the ‘forgetting gate’. This gate
examines the input feature and the previous cell’s output, and determines which information
needs to be filtered out from the cell. This operation is performed by a layer with sigmoid
activation function, which outputs the value in the range of 0 (filter out) and 1 (keep).

ft � σ
(
w f · [

ht−1, zt
]
+ b f

)
(3)

The second gate is called the ‘input gate’. This gate is responsible for storing information
in the cell based on the input feature and the output of the previous cell. This operation is
performed by two layers, one with sigmoid activation function and the other layer with tanh
activation function. The sigmoid layer retrieves the relevant information to be used to update
while the tanh layer creates a candidate vector that will be used to update the cell state.

ut � σ
(
wu · [

ht−1, zt
]
+ bu

)
(4)

C̃t � tanh
(
wc · [

ht−1, zt
]
+ bc

)
(5)

The computation to update the cell state is given as follows:

Ct � ut ∗ C̃t + ft ∗ Ct−1 (6)

As can be seen from the above formula, the update considers the state of the previous cell.
This allows the cell to add some relevant information from the previous cell state to the cell
state.

The final gate is the ‘output gate’. This gate examines the input feature and the previous
cell’s output and produces the output that is based on the cell state. The computation of the
output is given as follows.

vt � σ
(
wv · [

ht−1, zt
]
+ bv

)
(7)

ht � vt ∗ tanh(Ct ) (8)

Each of the LSTM cells is set to have 48 hidden units and the LSTM network returns only
the output of the last cell, hT . The dropout regularization with a dropout rate equal to 0.5 is
applied to the LSTM network to improve the model generalization. Finally, the output of the
LSTM network is fed to a softmax classifier with 12 units whereby each unit represents an
activity class.

Given a sequence of windows, xn−K , . . . , xn−1, xn , the model training is performed by
minimizing the loss function, L between the prediction and the window’s label. This can be
expressed as follows.

(w, b) � argmin
w, b

L
(
yn , ŷn

)
(9)
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where yn is the label of the current window (window being predicted) and ŷn is the prediction
of the current window. The loss function is the cross entropy, which is defined as follows.

L
(
yn , ŷn

) � −
M∑

m�1

yn log ŷn (10)

3.3 Implementation Details

The dataset is split using the subject-based hold-out method. The split ratio is 22 subjects
to 8 subjects. Note that each subject was asked to perform the protocol twice. Therefore,
there are 44 activity data for the training set and 16 activity data for the test set. In the
experiments, the validation set is not used due to the limitation of the dataset. Therefore, the
whole training set is used to train the model, and the test is used to evaluate the model. The
training epoch is set to 500 and the batch size is set to 128. The training loss is monitored
during training, and the model checkpoint is used to save the best weights. The proposed
model is trained to minimize the cross-entropy loss. The training algorithm is the adaptive
moment estimation (Adam)optimizer. TheL2 regularization is used to prevent themodel from
overfitting the training data. The proposed model was implemented using the TensorFlow
framework. The workstation is equipped with Intel i5, 16 Gbmemory and Nvidia GTX 1070.
Several performance metrics are used to evaluate the performance of the proposed model.
The performance metrics are precision, recall, F-score and accuracy. The precision indicates
the ability of the model to distinguish an activity class from all the other classes. The recall
indicates the ability of the model to correctly recognize an activity class. The F-score is the
average of recall and precision. The accuracy indicates the fraction of correctly classified
activity windows.

4 Experimental Results

4.1 Experimental Setup

This section describes the experimental results of this study. Two experiments have been
conducted to evaluate the performance of the proposed model. First, we experimented with
the relation between the number of feature learning pipelines and the recognition accuracy.
In this experiment, we set the size of the window segmentation to 120 samples with an
overlapping of 60 samples. This results in 9237 and 4354 windows for the training set and
test set respectively. The number of feature learning pipelines is increased from 1 to 4.
The second experiment involved the effect of window size on recognition accuracy. Based
on a study reported in [33], the optimal window size for recognizing energetic and non-
energetic activities is in the range of 1–5.75 s, while the recommended window size to
prioritize recognition speed is in the range of 0.25–3.25 s. Therefore, in this experiment, we
experimented with five window sizes in the range of 80 samples (1.6 s) and 140 samples
(2.8 s) as shown in Table 3.

The recall, precision and accuracy are used to determine the optimal parameters and
evaluate the proposed model. Recall is defined as the ability of the model to identify the
activity class of a window segmentation. Precision is the ability of the model to distinguish
an activity class from all the other classes. Accuracy is the fraction of correctly classified
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Table 3 The number of window segmentations for each experimental setup

Number of windows and
labels

80 samples 100 samples 120 samples 140 samples 128
samples

Training set 13,856 11,084 9237 8659 7917

Test set 6532 5225 4354 4082 3732

window segmentation. The performance metrics are given as follows.

Recall � T P

T P + FN
(11)

Precision � T P

T P + FP
(12)

Accuracy � T P + T N

T P + FP + T N + FN
(13)

where TP is true positive, TN is true negative, FP is false positive and FN is false negative.

4.2 Number of Feature Learning Pipelines

In this experiment, the optimal number of feature learning pipelines is determined. Five
models are built as listed in Table 4. The models are trained using the training set until
the number of maximum epochs is reached. During the training, the training accuracy is
monitored, and the best weights are saved based on the training accuracy. The trained models
are then evaluated using the test set. First, the proposed model is evaluated with 1 feature
learning pipeline without the sequential learning module. This is to evaluate the ability
of the feature extractor in extracting the relevant features for activity classification. The
results show that the proposed model is able to achieve high accuracy of 0.900. Then, we
evaluate the performance of the model when the sequential learning module is integrated
to learn the temporal information of the sensor data as well as the sequence of the activity
windows. An improvement of 0.003 is observed. This shows that capturing the temporal
information of the sensor data and activity windows is significant in the classification of
the activities. Following this, the number of feature learning pipelines is increased to two
to model two activity windows in sequence. In other words, the proposed model utilizes
the previous activity window in predicting the current window. Note that, for models with
multiple feature learning pipelines, the number of windows is equal to the number of feature

Table 4 The accuracy of the proposed model with the different number of feature learning pipelines

Model Accuracy

1-feature learning pipeline 0.900

1-feature learning pipeline with the sequential learning module 0.903

2-feature learning pipeline with the sequential learning module 0.905

3-feature learning pipeline with the sequential learning module 0.912

4-feature learning pipeline with the sequential learning module 0.904
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learning pipelines. However, the number of output (prediction) remains the same, which is
the prediction of the current window (window being predicted). This is indicated by formula
(9). The results show that the performance of the proposed model is increased by 0.002. The
experiment proceeds with three and four feature learning pipelines. The best performance is
observed when the proposed model is integrated with three feature learning pipelines with
an accuracy of 0.912. For the next experiment, this model configuration is used to investigate
the optimal window size for activity recognition. Table 4 list the recognition accuracy for
each model configuration.

4.3 Window Size

In this experiment, the proposed model with 3-feature learning pipeline is used to determine
the optimal window size. The models are trained using the training set until the number
of maximum epochs is reached. During the training, the training accuracy is monitored,
and the best weights are saved based on the training accuracy. The trained models are then
evaluated using the test set. The window size is varied to 80, 100, 120, 140 and 128 samples.
Each window size has 50% overlapping. This experiment is critical in determining the best
window size due to the characteristic of the sensor data, which directly affects the activity
classification. Some activities take a longer time to complete, while others are completed in a
short time. A too small or large window size may cause the window to be wrongly classified.
This problem would be compounded when a sequence of activity windows is considered
during the activity classification. Figure 2 shows the recall, precision and F-score measures
of the activity recognition with the different windows sizes. Table 5 lists the accuracy of the
experimental setups.

Overall, it is observed that the proposed model performed well in classifying the
non-transitional activities (A1–A6) compared to transitional activities (A7–A12). All the
non-transitional activities were classified with F-score measures above 0.800, whereas the
transitional activities were classified with F-score measures in the range of 0.403 and 0.753.
This is due to the limited windows of transitional activity. This is shown in Table 1 whereby
the number of samples of non-transitional activities is significantly higher than the number
of samples of transitional activities. It is also observed that a significant number of A4 win-
dows are misclassified as A5 and vice versa in each of the experiments. Please refer to the
“Appendix” for the confusion matrix. This is due to the fact that both activities have similar
signal patterns. Hence, the features that have been learnedmight have similar representations.

Experimental setup 1 (window size equals 80 samples) shows that the proposed model
performed well in classifying the non-transitional activities compared to transitional activi-
ties with activity A3 achieved the highest precision of 1.00. The recognition accuracy of the
experiment is 0.892. Experimental setup 2 (window size equals 100 samples) shows sim-
ilar performance in classifying the non-transitional activities compared to the transitional
activities. However, it is observed that there is a slight improvement in classifying activity
A1 to A6. It is also observed that the number of misclassifications of activity A4 and A5 is
slightly lower. Overall, the recognition accuracy of the proposed model is 0.897. Experimen-
tal setup 3 (window size equals 120 samples) shows better performance in terms of F-score
measures in all activities except A3, A8, A9 and A12. The classification of activity A4 and
A5 is also improved. The accuracy of the proposed model is 0.907. Experimental setup 4
(window size equals 140 samples) shows a significant reduction in the recognition accuracy
whereby the accuracy is 0.891, which is 0.016 lower than the experimental setup 3. Similar
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Fig. 2 The performance measures of activity recognition with different window sizes a 80 samples, b 100
samples, c 120 samples, d 140 samples and e 128 samples

Table 5 Accuracy of activity recognition with different window sizes

80 samples 100 samples 120 samples 140 samples 128 samples

Accuracy 0.892 0.897 0.907 0.891 0.916

classification pattern is observed whereby the non-transitional activities achieved better F-
scores compared to the transitional activities. Based on experimental setup 4, it is concluded
that the optimal window size is between 120 and 140. Therefore, another experiment was
carried out by setting the window size equal to 128 samples. Experimental setup 5 shows a
significant improvement in accuracy which is recorded at 0.916, which is 0.008 higher than
experiment setup 3. It is observed that the number of misclassifications of activity A4 and
A5 is decreased. Also, the transitional activities (activity A7–A12) achieved better F-score
measures except for activity A10. Therefore, we can conclude that a window size of 128
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is the optimal value for activity recognition. Next, we compare the proposed model with a
benchmark hybrid model.

4.4 Comparison with the State-of-the-art Models

We compare the proposed model with other state-of-the-art models. Table 6 reports the
summary of the state-of-the-art models. For fair comparison, the table shows the model
performance in classifying datasets of basic activities only such as jogging, walking, walking
upstairs and downstairs, standing, sitting, lying down. The performance of the state-of-the-art
models on various datasets is shown in the table. The performance of our proposed model is
comparable, if not better than the state-of-the-art models.

The state-of-the-art models were evaluated on datasets collected from subjects while
performing the activities separately (not in continuous manners). Thus, the datasets contain
only basic activities but no transitional activities.Also, the studies split the datasets by instance
(sample) except for study [24, 26]. Hence, the intra subject dependencies is present in the
training set which would inflate the recognition accuracy. Unlike the state-of-the-art models,
our proposed model is evaluated on a dataset with basic activities and the transitions between
the activities. Classifying the dataset is challenging because the window segmentation might
contain data belonging to different activities. The dataset is split by subject.

As shown in the table, all the state-of-the-art models employed convolutional layers and
LSTM to extract local and temporal features for more accurate recognition results. Various
improvements to the classification model have been proposed to improve recognition accu-
racy. The attention mechanism module is integrated into the model to learn the relevance
of the features for prediction [25, 26]. In [30], the squeeze-and-excitation-based module is
integrated to model the dependencies of the feature maps. Although the modules are shown
to improve the recognition accuracy slightly, the integration increases the complexity of the
model. Furthermore, the state-of-the-art models do not exploit the sequence of the activity
windows when performing the recognition since the models accept a single window segmen-
tation as the input. Unlike the state-of-the-art models, our proposedmodel accepts a sequence
of activity windows which allows the relationship of the window features to be modeled and
consequently improves the recognition accuracy. In terms of the number of parameters, our
proposed model has the least number of parameters compared to the state-of-the-art models.

In the experiment, a comparison of the proposed model with a benchmark model is per-
formed. The benchmarkmodel is the hybrid convolution LSTMmodel proposed by [24]. The
rationale behind the comparison is that the authors used the same public SBHAPT dataset
in their study. However, the method reported in [24] converted the sensor data into image
form before feeding it into the proposed model. Therefore, to perform a fair comparison, we
built and trained the benchmark hybrid model on the SBHAPT dataset. The parameters of
the benchmark model such as kernel size, LSTM unit, training epoch, optimizer were set and
defined according to the study. The benchmark model was trained and evaluated with the
same training and test ratio. The performance measures of the benchmark model are given
in Fig. 3a. The comparison of the performance metrics is given in Fig. 3b and Table 7.

We observed that our proposed model with three feature learning pipelines outperforms
the benchmark architecture in terms of accuracy. The accuracy of the proposed model is
0.916 which is 0.013 higher than the benchmark model. In terms of recall, precision and
F-score, the proposed model performed better in classifying the non-transitional activities
(A1–A6), achieving an average F-score of 0.939 which is 0.014 higher than the benchmark
model. However, the proposed model achieved a slightly lower average F-score measure in
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Table 6 Summary of the state-of-the-art models

Relevant Model Model performance Description

Singh et al. [25] Dataset preparation:
Leave-one-out
(subject-independent)
Accuracy
MHEALTH: 0.9486
USC-HAD: 0.9088
UTD-MHAD2: 0.8994
WISDM: 0.9041

The proposed model accepts a single window
segmentation for activity recognition. The
architecture of the proposed model consists of
convolutional layers to extract local features,
followed by LSTM layer to capture the temporal
dependencies of the features and finally followed
by an attention mechanism to assign different
weights to the features to indicate the relevance
of the features for classifying the activity
Number of parameters: N.A

Abdel-Basset et al.
[26]

Dataset preparation: N.A
Accuracy
UCI-HAR: 0.9770
WISDM: 0.9890

The proposed model accepts a single window
segmentation for activity recognition. The
architecture of the proposed model consists of a
two-stream of spatial feature extractor and
temporal feature extractor, whereby a series of
residual blocks is used to extract the spatial
features while LSTMs with attention mechanism
are used to extract and assign weights to the
temporal features
Number of parameters: 312,934

Xia et al. [27] Dataset preparation:
Hold-out with 7:3 ratio
(subject-independent)
F-score
UCI-HAR: 0.9578
WISDM: 0.9585

The proposed model accepts a single window
segmentation for activity recognition. The
architecture of the proposed model consists of
two layers of LSTMs to extract the temporal
features of the data, followed by convolutional
and max-pooling layers to extract the local
features
Number of parameters: 49,606

Nafea et al. [28] Dataset preparation: N.A
Accuracy
WISDM: 0.9853
UCI-HAR: 0.9705

The proposed model accepts a single window
segmentation for activity recognition. The
architecture of the proposed model consists of
two-stream of convolutional layers and
bi-directional LSTM to extract local features and
temporal features, respectively. Finally, the
features are concatenated for classification
Number of parameters: N.A

Gao et al. [30] Dataset preparation:
Hold-out with 7:3 ratio
Accuracy
WISDM: 0.9885
UniMiB: 0.7903

The proposed model accepts a single window
segmentation for activity recognition. The
proposed model has two
squeeze-and-excitation-based modules: temporal
attention and channel-wise attention to capture
the temporal and channel-wise dependencies of
the features extracted by convolutional layers,
respectively
Number of parameters: 950,000–3,510,000

Proposed model Dataset preparation:
Hold-out with 7:3 ratio
(subject independent)
Accuracy
SBHAPT: 0.9160

The proposed model accepts multiple window
segmentations for activity recognition. The
proposed model has concurrent feature learning
pipelines which consist of convolutional and
max-pooling layers to extract local window
features. The window features are concatenated
and modeled with LSTM layers for activity
recognition
Number of parameters: 21,990
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Fig. 3 a The performance measures of the benchmark model. b Comparison of the performance measures
between the proposed model and the benchmark model in terms of classifying non-transitional (NT) and
transitional activities (TR)

Table 7 Accuracy of the benchmark model and the proposed model

Benchmark model Proposed model

Highest accuracy 0.9054 0.9160

Average accuracy over thirty (30) experiments 0.8893 0.8950

Standard deviation accuracy over thirty (30) experiments 0.0101 0.0096

95% confidence interval 0.8893 ± 0.00363 0.8950 ± 0.00345

classifying transitional activities (A7–A12) at 0.612 compared to 0.623 for the benchmark
model. Although the average F-score measure is lower, the average precision is higher, which
indicates that the proposed model is more precise in classifying the transitional activities.

Although acceptingmultiplewindow segmentations allows our proposedmodel to achieve
better performance, it introduces several challenges. First, the proposed model consumes
more memory resources because multiple window segmentations need to be stored. This is
also reflected in the dataset preparation for the model training. Since the model needs to
capture the dependencies between the multiple window segmentations, a large number of
samples (window segmentation) is required to ensure themodel generalization. The challenge
becomes more complicated when the number of window segmentation is large.

We performed the two independent t-test to determine if there is a statistically significant
difference between the two models’ accuracy. The proposed and benchmark models are
trained thirty (30) times, which is the minimum number of samples for hypothesis tests [34].
Each model’s accuracy is recorded, and the average and standard deviation of the models’
accuracy are calculated as shown in Table 7. The 95% confidence interval of the model
accuracy is also given in the table. The average accuracy of the proposed model is 0.895,
which is 0.006 higher than the benchmark model. It is noticed that the standard deviation of
the proposed model’s accuracy is lower than the benchmark model by 0.0005. The margin of
error for a 95% confidence level for the proposed model and benchmark model are 0.00345
and 0.00363 respectively.

We performed two types of hypothesis tests. The first test is to determine if the accuracy
of the proposed and benchmark models is equal or not, and the second test is to determine the
mean difference of the average accuracy. The significance level of the tests is set to 0.05. The
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Table 8 The null hypothesis and
the p-value of the hypothesis tests Null hypothesis p value

H0 : μproposed_model � μbenchmark_model 0.0161

H0 : μproposed_model − μbenchmark_model > 0.005 0.5939

H0 : μproposed_model − μbenchmark_model > 0.007 0.2943

H0 : μproposed_model − μbenchmark_model > 0.009 0.0950

H0 : μproposed_model − μbenchmark_model > 0.0095 0.0667

results of the tests are given in Table 8. As can be seen in Table 8, the p-value of the first test
is 0.0161, which is lower than the significance level. Therefore, it can be concluded that the
average accuracy of both models is not similar. For the second hypothesis test, we performed
the test for μ � 0.005, μ � 0.007, μ � 0.009 and μ � 0.0095. As can be seen in Table 8,
the p-values of the four tests are above the significance level. Therefore, it is concluded that
the mean difference of the average accuracy is about 0.01.

5 Conclusion

In this paper, we propose a deep temporal Conv-LSTM model to model the temporal infor-
mation of sensor data and activity windows for activity recognition. The proposed model
consists of concurrent feature learning pipelines to accept a sequence of activity windows
for feature extraction. In addition, the proposed model is integrated with a sequence learning
module to learn the temporal features from the concatenated window features. As a result, the
proposed model is able to learn a better feature representation of the sensor data for activity
recognition. The proposed model is evaluated on a public dataset consisting of dynamic,
static and transitional activities, and compared with a benchmark model. The results show
that the proposed model performs better than the benchmark model, achieving an accuracy
of 0.916, which is 0.013 higher than the accuracy’s of the benchmark model. We plan to
enhance the network architecture by integrating attention mechanism which can learn the
importance of the features to the prediction. The feature learning pipeline can be enhanced
by integrating squeeze-and-excitation module to capture more salient features.
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Appendix

Window size: 80

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12

A1 890 23 1 0 0 0 4 2 0 0 1 2

A2 31 859 2 1 2 0 3 6 0 0 2 3

A3 4 38 818 0 0 0 2 0 0 0 1 1

A4 0 0 0 918 148 0 2 3 0 3 1 0

A5 4 1 0 150 964 2 2 1 0 0 1 2

A6 0 0 0 0 0 1143 0 1 0 0 1 2

A7 0 0 0 13 14 0 40 1 1 3 5 1

A8 0 0 0 6 16 0 1 36 0 1 0 2

A9 0 0 0 5 3 17 0 2 37 1 31 0

A10 0 0 0 14 0 8 1 1 0 50 0 6

A11 0 0 0 6 2 16 0 0 18 2 42 0

A12 3 0 0 4 7 11 0 6 0 25 0 29

Window size: 100

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12

A1 702 34 0 0 0 0 1 1 0 0 1 1

A2 19 696 13 0 0 0 1 0 0 0 1 0

A3 3 5 676 0 0 0 0 0 0 0 0 3

A4 0 0 0 710 139 0 2 0 0 4 2 0

A5 1 1 0 93 800 1 0 1 0 1 4 1

A6 0 0 0 0 0 918 0 0 0 0 2 1

A7 0 1 0 6 10 0 22 1 1 4 15 1

A8 0 1 0 5 11 0 1 33 0 0 0 1

A9 0 0 0 3 1 9 0 2 36 0 24 1

A10 0 0 0 12 0 6 0 0 0 35 1 8

A11 0 1 0 4 1 13 0 1 17 2 30 0

A12 1 2 0 2 3 7 0 2 0 22 0 28

123



Deep Temporal Conv-LSTM for Activity Recognition

Window size: 120

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12

A1 600 2 1 0 1 0 0 1 0 0 1 10

A2 31 562 5 0 1 0 0 2 0 0 0 0

A3 3 11 567 0 0 0 0 0 0 0 1 0

A4 0 0 0 606 99 0 4 1 0 3 0 0

A5 0 1 0 43 697 0 4 3 0 0 3 1

A6 0 0 0 0 0 762 0 0 4 1 1 1

A7 0 0 0 7 12 0 26 1 0 1 5 0

A8 0 0 0 4 7 0 5 24 0 0 0 0

A9 0 0 0 5 3 11 0 0 24 0 21 0

A10 0 0 0 8 0 3 3 0 1 33 0 7

A11 0 0 0 4 2 6 4 0 13 0 28 0

A12 1 0 0 5 3 4 0 2 0 16 0 22

Window size: 140

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12

A1 499 21 3 0 0 0 2 1 0 0 0 4

A2 12 484 10 0 1 0 0 10 0 0 0 5

A3 0 5 481 0 0 0 1 0 0 0 0 1

A4 0 0 0 503 98 0 2 3 1 3 0 1

A5 0 0 0 77 552 0 4 8 0 1 3 0

A6 0 0 0 0 0 653 0 0 1 1 0 3

A7 0 0 0 5 12 0 25 0 0 0 1 0

A8 0 0 0 1 3 0 0 28 0 2 0 0

A9 0 0 0 3 0 5 1 2 21 0 23 0

A10 0 0 0 9 0 3 1 0 0 29 0 6

A11 0 0 0 3 1 7 4 0 8 0 28 0

A12 0 0 0 1 2 4 0 0 0 19 0 21
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Window size: 128

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12

A1 525 49 4 0 0 0 0 1 0 0 0 1

A2 15 446 6 0 0 0 0 1 0 0 0 0

A3 0 10 526 0 0 0 0 0 0 0 1 0

A4 0 0 0 594 68 0 1 4 0 1 0 0

A5 1 1 0 21 674 2 1 2 0 1 5 0

A6 0 0 0 0 0 713 0 0 0 1 1 4

A7 0 0 0 11 6 0 27 2 0 1 2 0

A8 1 0 0 2 5 0 0 32 0 0 0 0

A9 0 0 0 5 1 7 0 0 20 0 25 1

A10 0 0 0 9 2 2 0 0 0 28 0 7

A11 0 0 0 1 3 6 0 1 5 0 39 0

A12 1 0 0 2 2 2 0 2 0 17 0 25
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