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H I G H L I G H T S  

• A new deep parallel architecture that exploits local and temporal features is proposed. 
• Each feature learning pipeline has two sub-pipelines to learn local and temporal features of the input window. 
• Channel attention is used to increase responsiveness to essential features. 
• The size of the model is suppressed using a lightweight neural network module.  
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A B S T R A C T   

Human Activity Recognition (HAR) is an essential area of pervasive computing deployed in numerous fields. In 
order to seamlessly capture human activities, various inertial sensors embedded in wearable devices have been 
used to generate enormous amounts of signals, which are multidimensional time series of state changes. 
Therefore, the signals must be divided into windows for feature extraction. Deep learning (DL) methods have 
recently been used to automatically extract local and temporal features from signals obtained using wearable 
sensors. Likewise, multiple input deep learning architectures have been proposed to improve the quality of 
learned features in wearable sensor HAR. However, these architectures are often designed to extract local and 
temporal features on a single pipeline, which affects feature representation quality. Also, such models are always 
parameter-heavy due to the number of weights involved in the architecture. Since resources (CPU, battery, and 
memory) of end devices are limited, it is crucial to propose lightweight deep architectures for easy deployment of 
activity recognition models on end devices. To contribute, this paper presents a new deep parallel architecture 
named DLT, based on pipeline concatenation. Each pipeline consists of two sub-pipelines, where the first sub- 
pipeline learns local features in the current window using 1D-CNN, and the second sub-pipeline learns tempo-
ral features using Bi-LSTM and LSTMs before concatenating the feature maps and integrating channel attention. 
By doing this, the proposed DLT model fully harnessed the capabilities of CNN and RNN equally in capturing 
more discriminative features from wearable sensor signals while increasing responsiveness to essential features. 
Also, the size of the model is reduced by adding a lightweight module to the top of the architecture, thereby 
ensuring the proposed DLT architecture is lightweight. Experiments on two publicly available datasets showed 
that the proposed architecture achieved an accuracy of 98.52% on PAMAP2 and 97.90% on WISDM datasets, 
outperforming existing models with few model parameters.   

1. Introduction 

The aged and dependent population will pose significant social and 
economic challenges in the next decades. According to the World Health 
Organization (WHO), there will be 1.4 billion people 60 and older by 
2030, which will increase to 2.1 billion by 2050 [1]. In general, elderly 

people who are vulnerable because of cognitive and physical limitations 
need assistance with activities of daily living. However, the cost of 
having medical staff and caregivers continually watch over elderly 
people with these issues is a challenge [2]. In recent times, such moni-
toring has become simpler due to the advancements in ubiquitous 
computing, which attempts to develop applications running in highly 
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dynamic situations that require minimal human supervision. A typical 
example is the Human Activity Recognition (HAR) system. HAR systems 
are designed using external and wearable sensing [3]. Sensors are 
positioned outside of the person doing the activity in external sensing, 
while sensors are directly linked to the user or carried around by the user 
in wearable sensing. 

Wearable Sensor HAR can be defined as an approach of seamlessly 
capturing positional changes of humans using non-infringing devices. 
Such devices include accelerometers, gyroscopes, and magnetometers, 
which can be embedded in everyday wearables such as smartphones, 
smartwatches, smart bracelets, clothing, and shoes, among many others 
[4]. The most common application of HAR is in pervasive healthcare and 
rehabilitation. Wearable sensors generate enormous amounts of data, 
and these signals are multidimensional time series of state changes [5]. 
Therefore, the signals must first be divided into windows and features 
extracted to recognize activities. Data from wearable sensors is extracted 
to train machine and deep learning models. However, with machine 
learning, feature extraction is hand-crafted and often domain-specific, 
making feature extraction tedious [6]. For this reason, recent HAR re-
searchers have adopted deep learning to automatically extract features 
from wearable sensors for activity recognition. 

Several deep learning models based on Convolutional Neural Net-
works (CNN) and Recurrent Neural Networks (RNN) have been pro-
posed by researchers to learn salient features from wearable sensor 
signals automatically. For instance, RNN-based models can extract 
temporal connections and learn features over time intervals, whereas 
CNN-based models capture the local connections in the current window 
in activity signals [7,8]. Several activity recognition models have been 
proposed using CNN, RNNs, or a combination of both for feature 
learning. For example, the works of Rueda et al. [9], Qi et al. [10], and 
Bai et al. [11], among others, proposed activity recognition models 
using CNNs to learn local features, Chen et al. [12], Guan and Plötz [13], 
and Saha et al., [14] proposed models based on RNNs to extract tem-
poral connections, while Donahue et al. [15], Xia et al. [16], Noor et al. 
[17], and Park et al. [18], among many others, have proposed models 
based on hybrid models, which combines CNN with variants of RNNs. 
Even though these approaches can automatically learn features from 
wearable sensor signals, tuning deep learning models to capture more 
discriminative features of human activities is vital. 

Generally, wearable sensor HAR involves processing multiple 
streams of time-series data from various sensors, which can be high- 
dimensional and noisy, making it a complex task that requires the 
ability to capture subtle patterns and correlations in the data [19]. Even 
though shallow architectures can capture relationships between input 
signals and the target activity, they do not learn hierarchical represen-
tations of data, which often limits their ability to capture complex re-
lationships and dependencies of human activity features. For this 
reason, various works have proposed multiple input deep learning ar-
chitectures, where a separate network branch processes each input 
before being combined. However, unlike the proposed DLT, these 
models often capture local and temporal features on the same heads, 
which invariably affects the quality of features learned from wearable 
sensor signals. Also, to improve the quality of learned features, some 
researchers have introduced attention mechanisms in multiple-input 
feature learning models, as seen in [8,20–22] and [23], among many 
others. However, these models often come with large parameters due to 
the multiple pipelines combined for feature learning, which is unsuit-
able for wearable computing [24] since resources such as CPU, battery, 
and memory of such devices are limited. 

For this reason, there is a need to propose lightweight deep archi-
tectures that can capture more discriminative features of human activ-
ities for easy deployment on end devices. To address these challenges, 
this research proposes a new deep learning architecture that simulta-
neously learns local and temporal features on different sub-pipelines. 
The novelty of this work is in the architectural design, which consists 
of two sub-pipelines concatenated over three independent pipelines to 

learn local and temporal features simultaneously. The first sub-pipeline 
uses 1D-CNN to learn local features in the current window, while the 
second sub-pipeline extracts temporal features using Bi-LSTM and 
LSTM. Both sub-pipelines are then concatenated before channel atten-
tion is added after each concatenation to increase the responsiveness of 
discriminative features and suppress the less important ones. Then, a 
global concatenation of the three independent pipelines is done. Spe-
cifically, the contribution of this work is in four folds: 

i. Firstly, we present a deep learning architecture that simulta-
neously captures local and temporal features using multiple sub- 
pipelines to independently learn salient human activity features.  

ii. Secondly, the local and temporal features are concatenated along 
the channel axis, and channel attention is used to increase 
responsiveness to essential features.  

iii. Thirdly, the model size is suppressed by a lightweight neural 
network module to ensure the model has few model parameters 
for easy deployment on portable devices. 

iv. Lastly, extensive experiments and ablation studies on two pub-
licly available benchmark datasets showed that the proposed DLT 
model outperformed the existing architectures. 

The remainder of this paper is organized as follows: Section II pre-
sents a discussion on the related works, Section III presents the meth-
odology of the proposed DLT architecture, Section IV presents the 
evaluation results and discussion, and Section V concludes. 

2. Related works 

It is impossible to overstate how essential HAR is to our everyday 
lives. It has emerged as a topic of interest to scholars from various dis-
ciplines [19]. This is because its application cuts across various domains, 
such as mobile computing [25], context-aware computing [26], ambient 
assisted living [27], surveillance systems [28], and, most recently, 
serious games [29]. The most recent deployment of HAR has been in fall 
detection [30], behavioural monitoring [31], psychological monitoring 
[32], stress detection [33], and gait anomaly detection [34], among 
others. Human activity data can be collected using vision-based, radi-
o-based, and sensor-based approaches [3,35,36]. However, the limita-
tions of the vision and radio-based methods have led to the adoption of 
the sensor-based approach, with wearable sensors being the most 
adopted due to their advantages over other sensor-based approaches 
[19]. 

In wearable sensor-based activity recognition, the sensors are 
attached to subjects so they can still perform all necessary activities 
without infringements. Examples of wearable sensors include acceler-
ometers, magnetometers, gyroscopes, and others. Recent advancements 
in miniaturization have seen these sensors embedded into clothing, 
shoes, wristwatches, eyeglasses, smartphones, smart belts, smart socks, 
and smart bracelets, among others [37]. According to a study in [38], 
shipments of wearable devices, such as wristbands, watches, smart-
watches, and others, reached 34.2 million units in the second half of 
2019, a 28.8% increase over the previous year. Therefore, human ac-
tivity recognition researchers easily accept the concept of sensor 
deployment on wearable devices. Human activities can be divided into 
basic and complex activities (activities of daily living). Basic activities 
can be further divided into static, dynamic, and transitional activities, 
including sitting, standing, sit-to-stand, stand-to-sit, walking, and 
running, among many others. In contrast, complex activities are in-
terleaves of two or more basic activities, which can involve preparing a 
meal, shopping, riding a bus, or driving a car. 

Literature shows that using features instead of raw data improves 
classification accuracy [39]. In the literature, several activity recogni-
tion models have been trained using machine learning methods, as seen 
in [40] and [41], among many other works. However, before machine 
learning techniques can be used for activity recognition, features of the 
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data must be extracted. This feature extraction method in machine 
learning is hand-crafted and often domain-specific, making feature 
extraction tedious [6]. For this reason, recent HAR researchers have 
adopted deep learning to extract features from wearable sensors for 
activity recognition. Several researchers have used CNN, RNN, or a 
hybrid of both methods for feature learning. A discussion of some of 
these approaches is presented in the sub-sections. 

2.1. CNN models 

CNN is the most widely used deep learning method for automatically 
extracting features in human activity identification. This is due to the 
hierarchical structure of activities, translation invariance, temporally 
linked readings of time-series signals, and issues with HAR feature 
extraction. By leveraging multiple-layer CNN with alternating convo-
lution and pooling layers, features are extracted automatically from raw 
time-series sensor data [42]. Generally, the lower layers of the convo-
lution extract more basic features, and higher layers extract more 
complex features. 

The pioneering research that leveraged CNN for automatic feature 
learning in sensor-based activity recognition is in Zeng et al. [43], where 
a single channel CNN layer with partial weight sharing was used to learn 
discriminative features from accelerometer data. Also, for time series 
data in general, Zheng et al. [44] proposed a multi-channel deep CNN 
model. In [45], a multiple-layer CNN model was proposed for human 
activity recognition, and the model was able to achieve improved 
recognition performance, especially on dynamic activities, compared to 
the performance of some shallow models. 

A CNN model that analyses each wearable sensor data individually 
was suggested by Rueda et al. [9]. A dataset used in industry was tested 
together with two publicly accessible datasets. The model’s accuracy of 
recognition increased for a few specific activities. Qi et al. [10] proposed 
a deep convolutional neural network model for activity recognition. The 
accelerometer, gyroscope, and magnetometer data were used to create 
the model, which included several signal processing algorithms and a 
signal selection module to increase the accuracy and richness of the raw 
data. The classification accuracy of experiments on the gathered dataset 
was 95.27%. The model, however, could not extract quality features for 
some of the 12 activities, as 5 had low precision and recall in the 50–70% 
range. 

Huang et al. [46] presented a two-stage end-to-end convolutional 
neural network to improve the quality of the features being extracted 
from activities such as walking upstairs and downstairs. The model 
improved recognition accuracy on the two activities compared to a 
single-stage CNN. Even though the model exceeded the performance of 
the single-stage CNN, which served as the baseline model, the quality of 
the features extracted from the activities was still low. In order to 
improve the feature representability of CNN on wearable sensor data-
sets, Ahmad & Khan [47] proposed a multistage gated average fusion 
model, which extracts and fuses features from all the layers of CNN to 
learn quality features from wearable sensor data. However, the quality 
of the features extracted was still relatively low. A limitation could be 
attributed to the long-term dependency of the time series data, which 
CNN cannot handle. 

Since wearable sensors come in time series format, extracting the 
long-term dependency of the time series using CNN makes it challenging 
to improve the performance of the activity recognition models, as CNN 
mainly captures the local features in the current window [48]. Since 
CNN ignores the temporal dependencies of activity features, some re-
searchers have proposed RNN models for automatic feature learning in 
activity recognition. The RNN can remember early information in the 
sequence data and is suitable for processing time-series data. 

2.2. RNN models 

RNN models can capture temporal information from sequential data 

and retain temporal memory of signals in a time series. Therefore, they 
can address the issue of sequential human activity recognition [49]. 
RNNs consist of the input layer, hidden layers with multiple nodes, and 
the output layer. RNNs typically experience explosive and disappearing 
gradient issues. Due to this, the network cannot accurately represent 
long-term temporal relationships between input signals and human ac-
tivities. By swapping out conventional RNN nodes with LSTM memory 
cells, RNNs based on LSTM address the limitations of the traditional 
RNN nodes and can model lengthy activity windows. In LSTMs, there are 
four interconnected layers in the repeating module. These layers consist 
of the cell state layer and three additional levels known as gates. The 
LSTM unit may decide whether new data should be added to the current 
memory or if it should be kept. Therefore, LSTM-RNN can create 
long-range dynamic dependencies to avoid the vanishing or exploding 
gradients problem while training. In time series classification, the 
principal elements of an LSTM network include the sequence input 
layer, the LSTM layer, the fully connected (FC) layer, and the classifi-
cation output layer with SoftMax. In Edel & Köppe [50], a binarized 
RNN model was presented, termed a Bidirectional Long Short-Term 
Memory Recurrent Neural Network (BiLSTM-RNN). The model was 
benchmarked on two publicly available datasets and one custom data-
set. The result showed that the model addressed the problems of bulky 
model size problems at the expense of high model training time. 

Agarwal & Alam [49] proposed a model with two LSTM layers for 
feature learning in human activity recognition, with each layer in the 
model having 30 neurons. The model was evaluated on the Wireless 
Sensor Data Mining (WISDM) dataset using a 180 sliding window size 
and achieved a recognition performance of 95.78%. Even though the 
model was less bulky, it still misclassified the walking, walking upstairs, 
and walking downstairs features, all of which have inter-class similar-
ities. The authors in Barut et al. [51] employed a multi-task LSTM model 
for activity recognition and intensity estimation after initially devel-
oping a new dataset with a single wearable sensor attached to the waist. 
The authors considered sitting, laying down, standing, walking, walking 
upstairs, downstairs, and running and used a sliding window segmen-
tation size of 100. However, the computation time was high, and the 
quality features of some activities were not well learned. In recognizing 
human activities, processing time is a crucial consideration. This is 
because most of the activity recognition use cases need immediate 
performance. Hence, using RNN models for activity recognition is un-
suitable for real-world deployment. Recently, some researchers have 
coupled the feature extraction capabilities of RNNs with the capability 
of CNN to simulate temporal dependencies among human activities to 
extract more high-quality features of human activities from wearable 
sensor signals with minimal computation time. 

2.3. Hybrid models 

In a move to improve feature learning, some researchers have com-
bined CNN with RNNs to learn temporal and local features from wear-
able sensor signals. For example, C. Xu et al. [52] proposed InnoHAR, a 
model that employed 2D-CNN and GRU to improve the quality of fea-
tures learned from wearable sensor signals. The authors used a sliding 
window size of 170 on the PAMAP2 dataset with 78% overlap and 
achieved recognition accuracy of 93.5%. However, the model took 
around 153 s for activity prediction, and the issue of inter-class simi-
larity was not addressed. In [53], a model based on simple recurrent 
units (SRUs) with the gated recurrent units (GRUs) of neural networks 
was proposed. The ability of the SRUs’ internal memory states was 
utilized by the authors to process sequences of multimodal input data 
and used the deep GRUs to store and learn how much of the previous 
information is delivered to the future state to solve vanishing gradient 
difficulties and accuracy fluctuations. Experiments were done on the 
MHealth dataset, which consists of 12 activities. 

Dua et al. [48] merged CNN and GRU in their multi-input hybrid 
model by combining three CNN-GRU architectures. The model was 
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evaluated on the PAMAP2, UCI-HAR, and WISDM datasets and achieved 
95.27%, 96.20%, and 97.21% accuracies on the three datasets, respec-
tively. However, the model size was relatively large, with high training 
time. Challa et al. [54] used Time distributed CNN with 
Bidirectional-LSTM (Bi-LSTM) to categorize multi-activities on the 
PAMAP2, WISDM, and UCI-HAR datasets, and a sliding window size of 
128 was used on the three datasets. The time-distributed CNN had 64 
and 32-channel dimensions, with filter sizes 3, 7, and 11. The model 
achieved an accuracy of 94.27% on PAMAP2, 96.04% on WISDM, and 
96.31% on UCI-HAR datasets. However, some activities had precision 
and recall as low as 70%. 

Nafea et al. [55] proposed a CNN-Bi-LSTM model that employs 
bi-directional long short-term memory and CNN with varied kernel sizes 
to learn features at various resolutions. Features were extracted using 
the stacked convolutional layers, and a flattened layer was added before 
a fully connected layer. Also, another feature learning pipeline with a 
Bi-LSTM layer and LSTM layer were stacked. The features were also 
flattened, and then a fully connected layer was added. Subsequently, the 
features in the fully connected layers were concatenated, followed by 
another flattened layer before activity classification. The model was 
evaluated on WISDM and UCI-HAR datasets, and the researchers chose a 
sliding window size of 128 to segment the signals. Results showed that 
the model achieved improved classification accuracy. However, the 
model size was bulky due to the architecture employed in stacking the 
convolutional layers. 

A Bi-LSTM and residual block model was proposed for feature 
learning in [56]. The model functioned by automatically extracting local 
features from inputs of multidimensional inertial sensors using the re-
sidual block, retrieving the forward and backward dependencies of the 
feature sequence using Bi-LSTM, and then feeding the features into the 
Softmax layer for classification. The model was evaluated on PAMAP2 
and WISDM and achieved a classification performance of 97.15% and 
97.32% on each dataset. In [17], a Conv-LSTM model that uses the 
sliding window relationship and the temporal features of sensor-based 
activity recognition data was proposed for salient feature learning. 
The model concatenated window characteristics, employed a 
sequence-learning module to learn temporal information, and achieved 
a 91.6% accuracy on the benchmarking dataset. 

Lu et al. [57] proposed a multi-channel CNN-GRU feature learning 
model for activity recognition. Each channel in the model had two 
1D-CNN layers with 64 and 128 channel dimensions and a fixed filter 
size of 3, 5, and 7 in each channel. The features were concatenated 
before adding two GRU layers with 128 and 64 neurons. The model was 
also benchmarked on PAMAP2, WISDM, and UCI-HAR datasets using 
various sliding window sizes and achieved an accuracy of 96.25%, 
96.41%, and 96.67% on the datasets, respectively. In [58], an ensemble 
of activity recognition models was proposed. The authors developed 
four standalone feature learning pipeline models and ensembled them to 
increase feature learning. The four ensembled models consist of a CNN 
model, an LSTM concatenated with a CNN model, a ConvLSTM model, 
and a Stacked LSTM model. Prediction using the Ensem-HAR model was 
achieved by stacking predictions from each previously described model, 
followed by training a Meta-learner on the layered prediction, which 
yields the final prediction on test data. The model achieved a classifi-
cation accuracy of 98.70% on WISDM, 97.45% on PAMAP2, and 95.05% 
on UCI-HAR. However, the model was highly bulky due to the ensemble 
of four standalone models. Generally, one limitation of CNN is that it 
treats all features equally, and since some features in wearable sensor 
data are often more important than others, some researchers have pro-
posed advanced attention models to increase the responsiveness of ac-
tivity recognition models to essential features. 

2.4. Feature learning with attention mechanisms 

The primary idea behind the attention mechanism is to provide 
various weights to various sorts of information. Consequently, the deep 

learning model is drawn to it when relevant data is given a higher pri-
ority weight [59]. In recent times, researchers have adopted attention 
mechanisms in HAR. For example, Murahari & Plotz [60] proposed a 
DeepConvLSTM model with attention to exploring relevant temporal 
features. A relative improvement of 87.5% was recorded on the PAMAP2 
dataset using the model with attention and an accuracy of 74.8% on the 
model without attention. H. Ma et al. [22] proposed a model called 
Attnsense. The model combined attention with CNN and GRU to 
improve salient feature learning from signals from multiple streams. The 
model achieved an 89.3% F1-score on PAMAP2, with an increased 
model size, and had a high training time. This can be attributed to the 
method of having the CNN and GRU on the same heads. In H. Zhang 
et al. [61], the authors exploited the multi-head approach integrated 
with attention for human activity recognition. The features were learned 
using multi-head CNN and concatenated to produce a single feature 
vector. Thirty parallel attention heads were then used to learn crucial 
features for precise activity recognition during the feature selection 
phase. Additionally, the model had about 2.77 million parameters with 
an F1-score of 95.40% on the WISDM dataset. Zhang et al. [62] proposed 
another multi-head CNN model for feature learning and induced atten-
tion mechanism into each head to address the limitations of the high 
number of parameters while learning discriminative features. The model 
was evaluated on two public datasets, and the results showed that the 
model outperformed the baseline CNN, baseline LSTM, and baseline 
ConvLSTM that were assessed against the model. 

In Khan and Ahmad [21], three convolutional heads designed using 
one-dimensional CNN were proposed, with each head induced with an 
attention mechanism. The authors leveraged the squeeze and excitation 
block presented in Hu et al. [59] as an attention mechanism, placing the 
block after the first convolutional layer before adding another con-
volutional layer. The model was tested on the publicly available WISDM 
and UCI HAR datasets, with a sliding window size of 200 on WISDM and 
128 on UCI HAR. The result showed that the model was able to learn 
improved features. However, the size of the activity recognition model 
was still relatively large at 1.0415 M, even though it was lower than the 
model presented in [61]. In [63], a lightweight feature learning model 
was proposed, which used squeeze and excitation block with best-fit 
reduction ratio. The SE block was placed after the output of the flat-
tened layer was reshaped, and the model adaptively selected the number 
of neurons and the reduction ratio in the SE block, then benchmarked on 
PAMAP2, WISDM, and UCI-HAR datasets, achieving 97.76%, 98.90%, 
and 95.60% respectively. However, since the parameters on the model 
were chosen adaptively, the model had 0.549 M on the PAMAP2 dataset, 
while the size of the model on WISDM and UCI-HAR was quite 
parameter-heavy. 

Xiao et al. [64] proposed a perceptive extraction network to extract 
salient features from wearable sensor signals using CNN and LSTM with 
attention. The model stacked three convolutional layers with LeakyR-
eLU activation while using 128 channel dimensions and varying kernel 
sizes of 5, 7, and 11 in the convolutional layers. The features extracted 
by this layer were then concatenated with another feature learning 
pipeline of two 64-neuron LSTM layers with attention before a fully 
connected layer was added to classify the activities. The model was 
tested on PAMAP2, UCI-HAR, WISDM, and Opportunity and achieved 
improved recognition accuracy. However, the model’s size was still 
relatively large, and the model was not able to capture quality 
discriminative features. In [65], a module termed WSense, which is 
capable of learning salient features using lightweight models, was pro-
posed and evaluated on PAMAP2 and WISDM datasets. The module was 
presented as a plug-and-play network, which can be plugged into HAR 
architectures for parameter reduction, regardless of the sliding window 
segmentation. 

In Mim et al. [8], a GRU inception-attention model was proposed, 
which used GRU along with Attention Mechanism for the temporal 
feature learning and Inception module along with Convolutional Block 
Attention Module (CBAM) for the spatial part of their model. 
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Experiments showed that the model could not learn features of activities 
with inter-class similarity. Unlike previous works, our research proposes 
a DLT architecture that learns local features in the current window using 
one-dimensional CNN and temporal features using Bi-LSTM and LSTMs 
over multiple concatenated sub-pipelines. The squeeze and excitation 
block is then leveraged to boost responsiveness to discriminative fea-
tures after concatenation, while the WSense module is plugged into the 
top of the DLT feature learning pipeline to ensure the model size is 
lightweight. 

3. Proposed methodology 

Previous feature learning models take no advantage of learning local 
and temporal features simultaneously on different sub-pipelines. Also, 
multi-head deep feature learning models often come with high model 
parameters due to the architecture that combines multiple pipelines. By 
extracting the local features in the current window on a different sub- 
pipeline and the temporal features on another, the benefit of CNN and 
RNNs can be harnessed equally in capturing more discriminative fea-
tures from wearable sensor datasets. The workflow of the proposed 
model is presented in Fig. 1. 

As shown in Fig. 2, signals collected using wearable sensors were 
segmented into windows using the fixed sliding window with a degree of 
overlap, which the DLT architecture takes as inputs before features of 
the activities are learned and classified. The descriptions of the methods 
are presented in the sub-sections. 

3.1. Sliding window segmentation 

The activity signals in this research are segmented using a fixed 
sliding window with a degree of overlap, as shown in Fig. 2 and further 
explained. 

Given a stream of values (samples) xi ∈ R at Time ti, i = 0,…,N,

where N is the total number of samples. It is assumed that t0 = 0, and 
that the period of sampling is constant at ΔT, such that; 

ΔT = ti+1 − ti (1) 

Using a fixed sliding window size, the signals are split into segments 
of n samples where n > 1. Therefore, the window size w can be given 
as: 

w = nΔT (2) 

Typically, the segmentation is performed with a degree of 

overlapping. Given m ∈ {1,2,3…, n − 1} as the number of samples in a 
certain overlapping period between two consecutive sliding windows, 
the overlapping period between two consecutive windows in seconds is 
such that: 

v = mΔT (3)  

where the overlapping period is considered as a percentage of the total 
length of the window and is given as: 

y(%) =
m
n

(4) 

The overlapping is needed to increase the segmentation numbers to 
allow better generalization of activity recognition models. Hence, each 
sliding window Wc

k, k = 0,…K can, therefore, be given as a set of sam-
ples xi, such that: 

Wc
k =

{
xk(n− m) , xk(n− m)+1, xk(n− m)+2,…, xk(n− p)+n− 1

}
(5)  

where c is the data channels of the sensors, and K is the total number of 
sliding windows. 

3.2. Deep local-temporal model 

The proposed architecture consists of two sub-pipelines 

Fig. 1. Workflow of the proposed DLT architecture.  

Fig. 2. Fixed sliding window with overlap.  
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concatenated over three pipelines to learn local and temporal features 
simultaneously. The first sub-pipeline uses 1D-CNN to learn local fea-
tures in the current window, while the second sub-pipeline extracts 
temporal features using Bi-LSTM and LSTM. Both sub-pipelines are then 
concatenated before the SE block is added after each concatenation to 
increase responsiveness to discriminative features, and then a global 
concatenation of the three pipelines is done. The architecture of the 
proposed DLT model is presented in Fig. 3 and further discussed. 

3.2.1. Feature learning pipelines 
Each feature leaning pipeline in the DLT consists of two sub-pipelines 

of 1D-CNN, which captures the local features in the current window, and 
the Bidirectional LSTM and LSTM layers, which capture the temporal 
features. In extracting the local features, the segmented data was passed 
to 1D-CNN layers with 3, 5, and 7 kernel filters and 16, 32, and 64 
channel dimensions, with ReLU activation function. By employing 
progressively increasing kernel sizes (3, 5, and 7), the model becomes 
adept at detecting patterns of various scales within the input data. The 
smaller kernels capture the finer details, while the larger kernels grasp 
broader trends. This multiscale analysis ensures that the model can 
capture a wide spectrum of features. Also, the ascending channel di-
mensions (16, 32, and 64) correspondingly increase the complexity and 
depth of feature extraction. This hierarchical abstraction enables the 1D- 
CNN layers to learn more intricate and higher-level features progres-
sively. Each layer learns local features of the input data, builds feature 
maps based on convolutional filters, and recognizes intrinsic features in 
the output of the layer before it. A Batch Normalization layer is used to 
speed up learning and prevent covariate shift issues before a maxpool 
layer is added. LSTM and Bi-directional LSTM layers are leveraged to 
extract the temporal features. The LSTM layer consists of LSTM units and 
a shared architecture of these units, namely an input gate, output gate, 
cell, and forget gate. The architecture of the LSTM is presented in Fig. 4. 

As shown in Fig. 4, Ht, Ft , Ct , and Ot denotes the hidden state, the 
forget state, the memory cell state, and the output. xt denotes the input 
at time step t. The block contains sigmoid and tanh functions. By using a 
forget mechanism, the LSTM network’s initial operation seeks to specify 
the data to be captured from the previous hidden state, which can be 
expressed as presented in Eq. (6). 

Ft = σ
(
Wf xt + bf +Uf Ht− 1 + cf

)
(6)  

where Wf , Uf , bf and cf are the weights and biases of forget gate. Ft = 1 
means all previous hidden state is preserved, and Ft = 0 means all pre-
viously hidden state information is cleared. The next operation, which 
uses two mechanisms, decides how much of the new input should be 
preserved. Eq. (7) describes how the input gating determines what needs 
to be updated first. Second, the tanh function determines the likely state 
value, as shown in Eq. (8). 

It = σ(Wixt + bi +UiHt− 1 + ci) (7)  

Gt = tanh
(
Wgxt + bg +UgHt− 1 + cg

)
(8) 

where Wi, Wg, Ui, Ug, bf , bg, ci and cg are the weights and biases of 
input gate. The current cell state data is then calculated as stated in Eq. 
(9). 

Ct = Ft ∗ Ct− 1 + It ∗ Gt (9)  

where ∗ is the element-wise multiplication. Finally, the hidden state Ht is 
calculated by applying the tanh function to the computed memory state 
Ct, with the output gate Ot influencing the information retained in the 
hidden state, and it is shown in Eq. (10). 

Ot = σ(Woxt + bo +UoHt− 1 + co) (10) 

The hidden state Ht is then expressed as Eq. (11), where Ht ∈ Rd, and 
d is the dimension of the features. 

Ht = tanh(Ct) ∗ Ot (11) 

Since LSTM layers extract features in only one direction, the 
segmented data in the DLT model was passed to a Bi-directional LSTM 
layer. The LSTM layers in the forward and backward layers of the 
BiLSTM collectively determine the output of the BiLSTM layer. The 
structure of the BiLSTM layer is presented in Fig. 5. 

The output layer yt of the BiLSTM is expressed as shown in Eq. (12). 

yt =
[

H→t,H
←

t

]
(12)  

where H,H
←

t is the forward and backward result of the LSTMs and yt is 
the concatenated result of the LSTM units. By using the BiLSTM, faster 
and richer features can be learned. In the DLT model, two BiLSTM layers 
are stacked to improve the quality of the learned temporal features, with 
one-dimensional maxpool layer between them, before a single LSTM 
layer is passed, and another maxpool layer is added. 

3.2.2. Sub-pipeline concatenation and feature weighting 
After the local features in the current window and the temporal 

features have been extracted using the two sub-pipelines, a concatena-
tion layer is then used to concatenate the features in the maxpool layer 
of the local feature learning sub-pipeline, with the maxpool layer of the 
temporal feature learning sub-pipeline, along the channel dimension. 
Then, the squeeze and excitation (SE) block, presented in Fig. 6, is 
placed to recalibrate the features, such that important feature maps are 
emphasized while suppressing less important ones using channel 
weights. It is especially effective in improving the information flow 
within a network by adaptively recalibrating channel-wise features. 

The SE block consists of two main steps: squeezing and exciting. In 
the squeeze step, the global information is gathered from the channel- 
wise feature maps. Each channel’s information is compressed into a 
single number by applying global average pooling (GAP). This pooling 
operation averages the values in each channel to obtain a scalar repre-
sentation. In the excite step after obtaining the global information, the 
excitation step involves learning a set of channel-specific weights (pa-
rameters) representing each channel’s importance. This is often done 
using one or more fully connected layers or convolutional layers with 
non-linear activations. These weights determine how much each chan-
nel’s information should be amplified or suppressed. Then, the SE 
block’s output is obtained by multiplying the original feature maps by 
the learned channel weights. This process effectively scales the feature 
maps according to the learned importance of each channel. 

In the proposed model, the aggregated information about the fea-
tures in each concatenated sub-pipeline (channel statistics) u ∈ RL×D is 
obtained by passing the concatenated feature maps to the GAP layer of 
the SE block. Therefore, generating the statistic z ∈ RD by squeezing u 
through L. Hence, the d-th element of z is given as: 

zd = Fsq(ud) =
1
L

∑L

j=1
uj

d (13)  

where Fsq is given as the squeeze function and L is the length of the 
feature maps, D is the number of output filters or feature maps generated 
by the concatenation. 

The aggregated information acquired using the squeeze operation is 
then passed to the excitation operation to capture channel-wise de-
pendencies using a gating mechanism with a sigmoid activation func-
tion, given as: 

s = Fex(z,W) = σ(g(z,W) ) = σ(W2δ(W1z) ) (14)  

where σ is the sigmoid activation function, and δ is the ReLU activation 
function, z is the input to the excitation operation, W1 ∈ RD/r×D , W2 ∈

RD×D/r are the weight vectors, and r is the reduction ratio. s is a vector of 
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Fig. 3. Architecture of the Deep Local-Temporal Feature Learning model.  
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size equal to the number of feature maps. Thus, the values can be 
interpreted as the weights indicating the importance of the feature 
maps. Using s, the feature map ud is rescaled as follows: 

F(scale)(ud, sd) = sd.ud (15)  

where F(scale)(ud, sd) is the channel-wise multiplication of a scalar sd and 
feature map ud. 

3.2.3. Pipeline concatenation and model size reduction 
In the DLT model, the process is replicated over two additional 

pipelines, taking the total sub-pipelines to 3 local and 3 temporal feature 
learning sub-pipelines, and the discriminative features in the SE Block 
are then concatenated along the channel axis. After concatenation, one 
Bi-LSTM layer with 64 neurons and an LSTM layer with 128 neurons are 
added to retain the sequence of the features learned before the WSense 
module presented in [65] is added to reduce the model size and learn 
more salient features. In the WSense, a 1D convolutional layer takes in 
the feature maps in the LSTM layer and then used a global max pooling 
layer to downsample the input, taking the maximum value over each 
feature map. A second 1D convolutional layer is then added to detect the 
local conjunctions in the preceding feature maps, using a 1 kernel size 
and sigmoid activation function. After this, the maximum value over 
each feature map in the first convolutional layer of the WSense is then 
calibrated with the features in the second convolutional layer using an 
element-wise multiplication. A flatten layer was then added before 
including two fully connected layers with ReLU activation function. 
Lastly, a fully connected layer with a softmax activation function is 

added for activity classification. The probability of activity class i is 
given as: 

g(z)i =
ezi

∑K
j ezj

(16)  

where z values represent the model’s computed scores for each class, j is 
the index that iterates over all possible classes, typically from 1 to K, and 
K is the total number of classes. 

4. Results and discussion 

This section presents the datasets used for model evaluation, the flow 
of experiments, and the results and discussion on the evaluation results. 

4.1. Datasets 

4.1.1. PAMAP2 
The PAMAP2 dataset [66] has nine participants who were required 

to participate in eighteen (18) activities. These activities included 12 
protocol activities performed by all the subjects and six (6) optional 
activities performed by some subjects. The activities include sitting, 
standing, running, descending stairs, ascending stairs, cycling, walking, 
Nordic walking, vacuum cleaning, computer work, car driving, ironing, 
folding laundry, house cleaning, playing soccer, and rope jumping. 
Gyroscopes, accelerometers, magnetometers, heart rate monitors, and 
temperature measurements were used for data collection. This research 
considered the protocol activities and 36 features of 3 IMUs, including 
accelerometers, gyroscopes, and magnetometers. 

4.1.2. WISDM dataset 
The WISDM dataset [67] is an activity recognition dataset gathered 

from 36 participants who go about their daily lives. Accelerometer data 
from the three-axis was considered. The dataset consists of 6 activities: 
walking, sitting, standing, jogging, ascending, and descending stairs. 
The data was collected at a 20 Hz sampling rate using a smartphone 
accelerometer sensor. 

4.2. Experimental design 

Experiments on the DLT architecture were carried out in nine phases, 
as shown in Fig. 7. 

The first set of control experiments concatenated one local and one 
temporal (1 L-1 T) feature learning pipeline, which was then used to 
classify activities directly before evaluation. The second experiment 

Fig. 4. Architecture of the LSTM.  

Fig. 5. Architecture of the Bi-LSTM.  
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included feature weighting in the 1 L-1 T pipeline, and then the 

performance was evaluated before finally combining feature weighting 
with WSense on the 1 L-1 T pipeline. The second set of control experi-
ments concatenated two local and two temporal (2 L-2 T) feature 
learning pipelines and directly classified activities, then feature 
weighting was included in the 2 L-2 T pipeline, and the model was 
evaluated before finally combining feature weighting with the WSense 
module on the 2 L-2 T pipeline. For the last set of experiments, three 
local and three temporal (3 L-3 T) feature learning pipelines were 
concatenated, and the pipeline was used for activity classification 
directly. In the second experiment, feature weighting was included in 
the 3 L-3 T pipeline before classifying activities. While in the final 
experiment, Feature weighting and WSense were combined and 
included in the 3S-ST feature learning pipeline before the model was 
evaluated. An epoch of 100 was set, and an early stopping mechanism 
was used in the call backs to stop the training once the model stops 
improving. The hyperparameters of the DLT model is shown in Table 1. 

The DLT model and its control experiments were built using Ten-
sorFlow 2.7.0 with Python 3.9 and trained on a workstation equipped 
with RTX 3050Ti 4 GB GPU and 16 GB RAM. 

4.3. Results 

The DLT model uses a new approach to feature learning by 
combining the local and temporal features with the relationship of the 
sliding window. Three local and three temporal sub-pipelines, which 
learned features simultaneously, were concatenated. 

4.3.1. Experiments on PAMAP2 
The results of the 3 L-3 T feature learning pipeline experiments on 

PAMAP2 are presented in Table 2. The Baseline 3 L-3 T feature learning 
pipeline recorded a recognition accuracy of 98.25%, with eight million 
seven hundred and eighty-three thousand four hundred and eight four 
(8783,484) model parameters. The Baseline 3 L-3 T model returned 0.99 
precision, recall and F1 score, while 0.98 precision and F1 with 0.97 
recall were achieved on sitting activity. On walking activity, 1.00 pre-
cision with 0.99 recall and F1 was achieved, while running had 0.98 
precision, 1.00 recall and 0.99 F1. Cycling activity returned 1.00 pre-
cision with 0.99 recall and F1, upstairs had 0.96 precision with 0.97 
recall and F1, while downstairs had 0.95 precision with 0.96 recall and 
F1. Vacuum cleaning also had 0.96 precision with 0.97 recall and F1, 
while ironing returned 0.99 score across the three evaluation metrics, 
and lastly, rope jumping had a precision of 1.00, 0.94 recall, and 0.97 
F1. Figs. 8and 9. 

Results of the experiment on the 3 L-3 T-SE feature learning model 
presented in Table 2 returned a recognition accuracy of 98.45%, with 
eight million seven hundred and eighty-six thousand, five hundred and 
fifty-six (8786,556) model parameters. The classification report shows a 
precision, recall, and F1 of 1.00 on lying, while sitting has 0.99 precision 
and F1, with 0.98 recall. Standing activity returned 0.96 precision, 0.99 
recall, and 0.98 F1. Walking had 0.99 precision and F1 with 1.00 recall, 

Fig. 6. Squeeze and Excitation Block.  

Fig. 7. Flow of experiments on DLT.  

Table 1 
Hyperparameters on DLT Experiments.  

Hyperparameters Details 

Optimizer Adam 
Epoch 100 
Batch Size PAMAP2 – 32, WISDM - 16 
Learning rate Initial Learning rate = 1e− 4 Minimum Learning rate 

= 1e− 7 Patience = 5 
Model loss Categorical cross-entropy 

Early stopping patience = 20 
Kernel Size 5, 7, 9 
Sliding window size WISDM – 128 

PAMAP2 – 171 
Sliding window 

overlap 
WISDM – 50% 
PAMAP2 – 50%  
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Table 2 
Classification Report (3 L-3 T on PAMAP2).   

3 L-3 T Baseline 
98.25% 
Model Size: 8.783 M 

3 L-3 T-SE 
98.45% 
Model Size: 8.786 M 

DLT 
98.52% 
Model Size: 0.680 M 

Activity Precision Recall F1 Precision Recall F1 Precision Recall F1 

Lying  0.99  0.99  0.99  1.00  1.00  1.00  1.00  0.99  0.99 
Sitting  0.98  0.97  0.98  0.99  0.98  0.99  1.00  0.96  0.98 
Standing  0.97  0.99  0.98  0.96  0.99  0.98  0.97  0.98  0.97 
Walking  1.00  0.99  0.99  0.99  1.00  0.99  0.99  0.99  0.99 
Running  0.98  1.00  0.99  1.00  1.00  1.00  1.00  0.98  0.99 
Cycling  1.00  0.99  0.99  0.99  1.00  1.00  0.99  0.99  0.99 
Nordic walking  0.99  1.00  1.00  1.00  0.99  0.99  0.99  0.99  0.99 
Upstairs  0.96  0.97  0.97  0.94  0.96  0.95  0.96  1.00  0.98 
Downstairs  0.95  0.96  0.96  0.96  0.96  0.96  0.99  0.96  0.98 
Vacuum cleaning  0.96  0.97  0.97  0.98  0.96  0.97  0.97  0.98  0.97 
Ironing  0.99  0.99  0.99  0.99  0.98  0.98  0.99  0.99  0.99 
Rope jumping  1.00  0.94  0.97  1.00  0.98  0.99  0.98  0.98  0.98  

Fig. 8. (a) Model training and validation on PAMAP2(a) accuracy (b) loss.  

Fig. 9. (a) Model training and validation on WISDM (a) accuracy (b) loss.  
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running activity achieved 1.00 score across the three evaluation metrics, 
while cycling had 0.99 precision with 1.00 recall and F1. On Nordic 
walking activity, a precision of 1.00 was returned with 0.99 recall and 
F1, while walking upstairs had 0.94 precision, 0.96 recall, and 0.95 F1, 
walking downstairs had 0.96 across the three evaluation metrics. The 
report on vacuum cleaning activity showed a precision of 0.98, 0.96 
recall, and 0.97 F1. Ironing had 0.99 precision with 0.98 recall and F1, 
while rope jumping had 1.0 precision, 0.98 recall and 0.99 F1. 

As shown in Table 3, the experiment on the 3 L-3 T-SE-WSense (DLT) 
feature learning model on PAMAP2 returned a recognition accuracy of 
98.52% with six hundred and eighty thousand nine hundred and 
seventy-two (680,972) model parameters. The classification report 
shows that the 3 L-3 T-SE-WSense model achieved a precision of 1.00 on 
lying activity, with 0.99 recall and F1 score. On sitting activity, 1.00 
precision was also returned with 0.96 recall and 0.98 F1. Standing ac-
tivity had 0.98 recall with 0.97 precision and F1, walking activity had 
0.99 score across the three evaluation metrics, running had a precision 
score of 1.00, recall of 0.98, and F1 of 0.99. Report on cycling, Nordic 
walking, and ironing activities returned 0.99 score across the three- 
evaluation metrics, walking upstairs had 0.96 precision, 1.00 recall, 
and 0.98 F1 score, while walking downstairs had 0.99 precision, 0.96 
recall, and 0.98 F1. Report on vacuum cleaning activity returned 0.98 
recall with 0.97 precision and F1, and rope jumping had 0.98 score 
across the three-evaluation metrics. The confusion matrix of the DLT 
model is presented in Table 3. 

The confusion matrix shown in Table 3 shows that the 3 L-3 T-SE- 
WSense model correctly classified 455 lying samples, with 1 mis-
classified as sitting and 2 as ascending stairs. 425 samples of sitting were 
correctly classified, and 2 samples were misclassified as lying, and 11 as 
standing, while 2 samples were misclassified as vacuum cleaning. On 
standing activity, 440 samples were correctly classified, and 1 sample 
was misclassified as cycling, 4 as vacuum cleaning and 6 as ironing. 515 
samples of walking activity were correctly classified, with 2 samples 
misclassified as standing, 2 as ascending stairs, and 2 as vacuum 
cleaning. On running activity, 215 samples were correctly classified, and 
1 sample was misclassified as walking, 1 as ascending stairs, and 2 as 
vacuum cleaning. 

Cycling activity had a total of 384 samples, and 382 were correctly 
classified, while 1 sample was misclassified as Nordic walking, and 
another as vacuum cleaning. On the Nordic walking activity, 398 sam-
ples were correctly classified with 2 misclassified as walking, and 1 as 
vacuum cleaning. 242 samples of ascending stairs were correctly clas-
sified with 1 sample misclassified as descending stairs. Also, 218 
descending stairs activities were correctly classified, while 5 samples 
were misclassified as ascending stairs, 2 as walking and 1 as vacuum 
cleaning. 427 vacuum cleaning activities were correctly classified, with 
1 sample misclassified sitting, 2 as cycling, 1 as Nordic walking, 1 as 
ascending stairs and another two samples were misclassified as ironing. 
Ironing activity had 586 samples which were correctly classified, with 1 
sample misclassified as standing, 1 as vacuum cleaning, and another as 
rope jumping. Lastly, out of the total 111 samples of rope jumping, 109 

were correctly classified, while 1 sample was misclassified as descending 
stairs and another sample as ascending stairs. 

4.3.2. Experiments on WISDM 
The results of the 3 L-3 T feature learning pipeline experiments on 

WISDM are presented in Table 4. As shown in Table 4, the Baseline 3 L- 
3 T model recorded a recognition accuracy of 96.85% with twelve 
million two hundred and eighty-five thousand two hundred and twenty 
(12,285,222) parameters. The classification report of the Baseline 3 L- 
3 T model showed that walking downstairs activity had a precision of 
0.83, 0.89 recall, and F1 of 0.86. On jogging activity, a precision of 0.99 
was achieved with 1.00 recall and F1. Sitting had a precision of 0.89, 
1.00 recall, and 0.94 F1. On standing activity, a 1.00 precision was 
achieved, with 0.83 recall, and 0.91 F1. Walking upstairs had a precision 
of 0.89, 0.81 recall, and 0.85 F1. While walking activity had a 1.00 score 
across the three metrics. 

Results on the 3 L-3 T-SE model achieved recognition accuracy of 
97.55% with twelve million two hundred and eighty-eight thousand two 
hundred and ninety-four (12,288,294) parameters. The classification 
report of 3 L-3 T-SE model presented in Table 4 shows that walking 
downstairs had a precision of 0.89, 0.87 recall, and 0.88 F1. Jogging and 
walking activities recorded 1.00 score across the three evaluation met-
rics, while sitting had 0.89 precision, 1.00 recall, and 0.94 F1. Standing 
had 1.00 precision, 0.83 recall and 0.91 F1, while walking upstairs ac-
tivity had a precision of 0.89, recall of 0.92 and 0.90 F1. 

The DLT model achieved a recognition accuracy of 97.90%, with six 
hundred and fifty-five thousand nine hundred and ten (655,910) pa-
rameters. The classification report shows that a precision of 0.89 was 
recorded on walking downstairs with 0.91 recall, and 0.90 F1. Jogging, 
standing, sitting and walking had 1.00 scores across the three-evaluation 
metrics, while walking upstairs recorded a 0.91 precision, 0.90 recall 
and 0.91 F1, showing that the proposed DLT model extracted improved 
features compared to the baselines. The confusion matrix of the DLT 
presented in Table 5, shows that out of the 55 walking downstairs 
samples used for model testing, 50 samples were correctly classified, 
with 5 misclassified as walking upstairs. On jogging activity, 1 sample 
out of the total 215 samples was misclassified as walking downstairs, 
while the remaining 214 were correctly classified. Walking upstairs 
activity, which had 59 test samples, had 53 correctly classified samples, 
with 5 samples misclassified as walking downstairs and 1 sample mis-
classified as walking. On sitting and standing activities, 8 and 6 samples 
were correctly classified, respectively, the total samples used for model 
testing, while walking had 229 of its samples correctly classified. 

4.4. Ablation study 

Ablation studies were carried out to determine the batch size and the 
number of neurons in the Bi-LSTM layer, and the results are presented in  
Fig. 10 (a) and (b). Batch sizes 8, 16, 32, 64 and 128 were considered in 
the ablation study. As shown in Fig. 10(a), batch size 32 achieved the 
highest recognition accuracy on PAMAP2 dataset. Also, 16, 32, 64, 128, 

Table 3 
Confusion Matrix of DLT on PAMAP2.  

Activity A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 

A1 455 1 0 0 0 0 0 2 0 0 0 0 
A2 2 425 11 0 0 0 0 0 0 2 0 0 
A3 0 0 440 0 0 1 0 0 0 4 6 0 
A4 0 0 2 515 0 0 0 2 0 2 0 0 
A5 0 0 0 1 215 0 0 1 0 2 0 0 
A6 0 0 0 0 0 382 1 0 0 1 0 0 
A7 0 0 0 2 0 0 398 0 0 1 0 0 
A8 0 0 0 0 0 0 0 242 1 0 0 0 
A9 0 0 0 2 0 0 0 5 218 1 0 0 
A10 0 1 0 0 0 2 1 1 0 427 2 0 
A11 0 0 1 0 0 0 0 0 0 1 586 1 
A12 0 0 0 0 0 0 0 0 1 1 0 109  
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and 256 neurons were considered in the experiment. However, the 
highest recognition performance was achieved when 64 neurons were 
used in the Bi-LSTM layer of the proposed DLT model, as shown in 
Fig. 10(b). Similarly, the results of the ablation study on the WISDM 
dataset, presented in Fig. 11 (a) and (b), showed that batch size 16 
returned the highest recognition performance, and this was achieved 
using 64 neurons in the Bi-LSTM layer. As shown in Fig. 11(b), 256 
neurons in the Bi-LSTM layer returned the highest recognition accuracy 
on the 3 L-3 T-SE baseline. However, the result achieved when 64 
neurons were used in the Bi-LSTM layer was presented for fair 
comparison. 

4.4.1. Experiments with pipelines 
As shown in Table 6, when one local sub-pipeline was concatenated 

with one temporal sub-pipeline (1 L-1 T), a recognition accuracy of 
95.62% was achieved with 4.271 million parameters on the WISDM 

dataset. Including the SE block in the 1 L-1 T sub-pipelines improved the 
recognition accuracy to 96.85%, with additional parameters of 4.272 
million. However, when the WSense module was added to the concat-
enated sub-pipelines, the recognition accuracy improved to 97.02%, and 
the model parameters was reduced to 0.569 million. Also, the result of 
the 1 L-1 T baseline model on the PAMAP2 dataset presented in Table 6 
returned an accuracy of 96.92% with 3.104 million parameters. 
Including the SE block into the 1 L-1 T pipeline improved the perfor-
mance to 97.20%, with 3.105 million parameters. Likewise, when the 
WSense module was added to the 1 L-1 T sub-pipelines, the recognition 
accuracy increased to 97.27% with 0.582 million parameters. By 
combining 2 local and 2 temporal pipelines (2 L-2 T), results on the 
WISDM dataset show that the Baseline 2 L-2 T model achieved 96.67% 
accuracy, an improvement on the Baseline 1 L-1 T. However, the model 
has a size of 8.278 million parameters. Also, when the SE block was 
included in the 2 L-2 T pipeline, the model saw an increase in 

Table 4 
Classification Report (3 L-3 T on WISDM).   

Baseline 3 L-3 T 
96.85% 
Model Size: 12.285 M 

3 L-3 T-SE 
97.55% 
Model Size: 12.288 M 

DLT 
97.90% 
Model Size: 0.655 M 

Activity Precision Recall F1 Precision Recall F1 Precision Recall F1 

Downstairs  0.83  0.89  0.86  0.89  0.87  0.88  0.89  0.91  0.90 
Jogging  0.99  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00 
Sitting  0.89  1.00  0.94  0.89  1.00  0.94  1.00  1.00  1.00 
Standing  1.00  0.83  0.91  1.00  0.83  0.91  1.00  1.00  1.00 
Upstairs  0.89  0.81  0.85  0.89  0.92  0.90  0.91  0.90  0.91 
Walking  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  

Table 5 
Confusion Matrix of DLT on WISDM.  

Activity Downstairs Jogging Sitting Standing Upstairs Walking 

Downstairs 50 0 0 0 5 0 
Jogging 1 214 0 0 0 0 
Sitting 0 0 8 0 0 0 
Standing 0 0 0 6 0 0 
Upstairs 5 0 0 0 53 1 
Walking 0 0 0 0 0 229  

8 16 32 64 128

0.95

0.96

0.97

0.98

0.99

1.00

Batch size

Ac
cu

ra
cy

3L-3T Baseline
3L-3T-SE
Proposed DLT

16 32 64 128 256
0.960

0.965

0.970

0.975

0.980

0.985

0.990

Number of Bi-LSTM Neurons

Ac
cu

ra
cy

3L-3T Baseline
3L-3T-SE
Proposed DLT

(a) (b)
Fig. 10. (a) Batch size comparison on PAMAP2 (b) Comparison of the number of neurons in the Bi-LSTM layer on PAMAP2.  

A.O. Ige and M.H. Mohd Noor                                                                                                                                                                                                              



Applied Soft Computing 149 (2023) 110954

13

recognition accuracy, as the accuracy stood at 97.02%, but also with a 
high model parameter of 8.280 million parameters. However, plugging 
in the WSense module on the 2 L-2 T-SE pipeline reduced the model size 
to 0.645 million, and the recognition accuracy improved to 97.37%. 

Similarly, on the PAMAP2 dataset, the 2 L-2 T baseline model 
recorded an accuracy of 97.76% with 5.944 million parameters, as 
shown in Table 6. When the SE block was added, the recognition ac-
curacy improved to 98.28%, with 5.946 million parameters. However, 
the high model size was reduced to 0.670 million parameters when the 
WSense module was plugged into the 2 L-2 T-SE feature learning pipe-
line, and the recognition accuracy also increased to 98.36%. On the 3 L- 
3 T model, which concatenated three local feature learning pipelines 
with three temporal pipelines simultaneously, a recognition accuracy of 
96.85% was achieved on the WISDM dataset, with 12.285 million pa-
rameters. Likewise, when the SE block was added to the 3 L-3 T model, 

the recognition accuracy improved to 97.55%, with 12.288 million pa-
rameters. However, the DLT model achieved a state-of-the-art recogni-
tion accuracy of 97.90%, with 0.655 million parameters. 

Likewise, on the PAMAP2 dataset, the 3 L-3 T baseline model ach-
ieved a recognition accuracy of 98.25% with 8.783 million parameters 
as shown in Table 6, while the 3 L-3 T-SE model improved the result by 
achieving an accuracy of 98.45% with 8.786 million parameters. How-
ever, the DLT model reduced the model parameters to 0.680 million and 
achieved a state-of-the-art recognition accuracy of 98.52%. A compari-
son of the pipelines with accuracy and model size on the two datasets is 
presented in Fig. 12 and Fig. 13. 

4.5. Comparison with state-of-the-art 

The comparison of the proposed DLT architecture with current state- 
of-the-art models in terms of methodology, model size, and accuracy is 
presented in Table 7. As shown, Gao et al. [20] developed a dual 
attention model and achieved a recognition accuracy of 93.16% on the 
PAMAP2 dataset with 3.51 M parameters. Similarly, for enhanced 
feature learning from activity signals, Dua et al. [48] suggested a CNN 
and GRU model with multiple inputs and achieved recognition accuracy 
of 95.24% on PAMAP2 and 97.21% on the WISDM dataset. Even though 
the size of the model was not presented in the research, the stacking 
structure of the layers shows that the size of the model will be bulky, as a 
fully connected layer was connected to the concatenation of the 
three-feature learning pipeline after two GRU layers, with no mecha-
nism to reduce the size. 

Also, in Challa et al. [54], another multiple input model was pro-
posed with CNN and Bi-LSTM and achieved recognition accuracy of 
94.29% and 96.05% with 0.647 M and 0.622 M parameters on PAMAP2 
and WISDM datasets, respectively. Likewise, in Han et al. [69], a 
heterogenous CNN module was proposed to improve feature learning in 
activity recognition and achieved an accuracy of 92.97% on PAMAP2 
with 1.37 M parameters. A similar deep learning model was proposed by 
Xiao et al. [70] to encode local and temporal information of the input 
data and achieved an F-Score of 98.00%. The model’s size was not 
presented, but the two-stream feature learning pipelines suggest a large 
number of parameters. Bhattacharya et al. [58] proposed an ensemble of 
CNN, CNN-LSTM, LSTM, and other models and evaluated on several 
datasets. However, replication showed that the model is 
parameter-heavy. Even though these models achieved improved 
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Fig. 11. (a) Batch size comparison on WISDM (b) Comparison of the number of neurons in the Bi-LSTM layer on WISDM.  

Table 6 
Experiments with Pipelines on WISDM and PAMAP2.   

Pipelines Accuracy 
(%) 

Model Size 

WISDM 1 L-1 T feature learning sub-pipelines  95.62 4.271 M 
2 L-2 T feature learning sub-pipelines  96.67 8.278 M 
3 L-3 T feature learning sub-pipelines  96.85 12.285 M 
1 L-1 T-SE feature learning sub- 
pipelines  

96.85 4.272 M 

2 L-2 T-SE feature learning sub- 
pipelines  

97.02 8.280 M 

3 L-3 T-SE feature learning sub- 
pipelines  

97.55 12.288 M 

1 L-1 T-SE-WSense  97.02 0.569 M 
2 L-2 T-SE-WSense  97.37 0.580 M 
Proposed DLT  97.90 0.655 M 

PAMAP2 1 L-1 T feature learning sub-pipelines  96.92 3.104 M 
2 L-2 T feature learning sub-pipelines  97.96 5.944 M 
3 L-3 T feature learning sub-pipelines  98.25 8.783 M 
1 L-1 T-SE feature learning sub- 
pipelines  

97.20 3.105 M 

2 L-2 T-SE feature learning sub- 
pipelines  

98.28 5.946 M 

3 L-3 T-SE feature learning sub- 
pipelines  

98.45 8.786 M 

1 L-1 T-SE-WSense  97.27 0.517 M 
2 L-2 T-SE-WSense  98.36 0.605 M 
Proposed DLT  98.52 0.680 M  
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performance, the limitation synonymous with them is the recognition 
accuracy recorded and the bulky size of the models, which is a constraint 
when deploying activity recognition models on portable devices. How-
ever, with the proposed DLT architecture, a state-of-the-art accuracy of 
98.52% was recorded on PAMAP2, while 97.90% was achieved on the 
WISDM dataset, which outperformed recent models, and this was ach-
ieved using a lightweight architecture. 

5. Conclusion 

Identifying human activities from wearable sensor signals is a chal-
lenging task that calls for contributions from researchers. In order to 
improve feature learning from wearable sensors, several multi-input 
architectures have been proposed. However, these architectures often 
extract local and temporal features on a pipeline, affecting the feature 
representation quality. Also, such models are parameter-heavy due to 
the number of weights involved in the architecture. Since resources 
(CPU, battery, and memory) of end devices are limited, it is important to 
propose lightweight deep architectures for easy deployment on end 
devices. In this paper, we, for the first time, propose a new method of 
feature learning by extracting local features in the current windows on a 

different sub-pipeline and temporal features on other sub-pipelines 
simultaneously. Then, the features were concatenated before using 
channel attention to improve responsiveness to discriminative features. 
By leveraging this approach, we were able to take advantage of the 
capabilities of CNNs and RNNs fully for feature learning in HAR. The 
proposed method, called DLT, was validated on WISDM and PAMAP2 
datasets, and the results showed that the DLT was able to improve 
feature learning, compared to the existing methods. In order to deter-
mine the suitable number of pipelines for the DLT architecture, several 
experiments were carried out using 1 Local - 1 Temporal, 2 Local – 2 
Temporal, and 3 Local – 3 Temporal feature learning sub-pipelines. The 
98.52% achieved by the DLT model on PAMAP2 is currently state-of-the- 
art, while the 97.90% achieved on WISDM outperformed several exist-
ing feature learning architectures, and this was achieved using a few 
model parameters. This makes the DLT a deep, lightweight human ac-
tivity recognition model that can be deployed on end devices for activity 
monitoring across various domains. For future work, we plan to infuse 
attention mechanisms into each local feature learning sub-pipeline and 
transformers for temporal feature learning to improve the quality of 
features extracted to infer activities. Also, more sensor-rich datasets, 
including datasets with transitional activities, will be considered. 
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Fig. 12. Comparison of Accuracy and Pipelines (a) PAMAP2 (b) WISDM.  

Fig. 13. Comparison of Model size and Pipeline (a) PAMAP2 (b) WISDM.  
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[50] M. Edel, E. Köppe, Binarized-BLSTM-RNN based Human Activity Recognition, 
2016 Int. Conf. Indoor Position. Indoor Navig. IPIN 2016 (2016) 4–7, https://doi. 
org/10.1109/IPIN.2016.7743581. 

[51] O. Barut, L. Zhou, Y. Luo, Multitask LSTM model for human activity recognition 
and intensity estimation using wearable sensor data, IEEE Internet Things J. 7 
(2020) 8760–8768, https://doi.org/10.1109/JIOT.2020.2996578. 

[52] C. Xu, D. Chai, J. He, X. Zhang, S. Duan, InnoHAR: A deep neural network for 
complex human activity recognition, IEEE Access 7 (2019) 9893–9902, https:// 
doi.org/10.1109/ACCESS.2018.2890675. 

[53] A. Gumaei, M.M. Hassan, A. Alelaiwi, H. Alsalman, A hybrid deep learning model 
for human activity recognition using multimodal body sensing data, IEEE Access 7 
(2019) 99152–99160, https://doi.org/10.1109/ACCESS.2019.2927134. 

[54] S.K. Challa, A. Kumar, V.B. Semwal, A multibranch CNN-BiLSTM model for human 
activity recognition using wearable sensor data, Vis. Comput. (2021), https://doi. 
org/10.1007/s00371-021-02283-3. 

[55] O. Nafea, W. Abdul, G. Muhammad, M. Alsulaiman, Sensor-based human activity 
recognition with spatio-temporal deep learning, Sensors 21 (2021) 1–20, https:// 
doi.org/10.3390/s21062141. 

[56] Y. Li, L. Wang, Human activity recognition based on residual network and BiLSTM, 
Sensors 22 (2022) 1–18, https://doi.org/10.3390/s22020635. 

[57] L. Lu, C. Zhang, K. Cao, T. Deng, Q. Yang, A Multi-channel CNN-GRU Model for 
Human Activity Recognition, IEEE Access 10 (2022) 66797–66810, https://doi. 
org/10.1109/ACCESS.2022.3185112. 

[58] D. Bhattacharya, D. Sharma, W. Kim, M.F. Ijaz, P.K. Singh, Ensem-HAR: An 
Ensemble Deep Learning Model for Smartphone Sensor-Based Human Activity 
Recognition for Measurement of Elderly Health Monitoring, Biosensors 12 (2022), 
https://doi.org/10.3390/bios12060393. 

[59] J. Hu, L. Shen, G. Sun, Squeeze-and-excitation networks. Proc. IEEE Comput. Soc. 
Conf. Comput. Vis. Pattern Recognit, 2018, pp. 7132–7141, https://doi.org/ 
10.1109/CVPR.2018.00745. 

[60] V.S. Murahari, T. Plotz, On attention models for human activity recognition, Proc. - 
Int. Symp. Wearable Comput. Iswc. (2018) 100–103, https://doi.org/10.1145/ 
3267242.3267287. 

[61] H. Zhang, Z. Xiao, J. Wang, F. Li, E. Szczerbicki, A Novel IoT-Perceptive Human 
Activity Recognition (HAR) Approach Using Multihead Convolutional Attention, 
IEEE Internet Things J. 7 (2020) 1072–1080, https://doi.org/10.1109/ 
JIOT.2019.2949715. 

[62] W. Zhang, T. Zhu, C. Yang, J. Xiao, H. Ning, Sensors-based Human Activity 
Recognition with Convolutional Neural Network and Attention Mechanism. Proc. 
IEEE Int. Conf. Softw. Eng. Serv. Sci, ICSESS,, 2020, pp. 158–162, https://doi.org/ 
10.1109/ICSESS49938.2020.9237720. 

[63] A.O. Ige, M.H. Mohd Noor, A lightweight deep learning with feature weighting for 
activity recognition, Comput. Intell. 39 (2023) 315–343, https://doi.org/10.1111/ 
coin.12565. 

[64] Z. Xiao, X. Xu, H. Xing, F. Song, X. Wang, B. Zhao, A federated learning system with 
enhanced feature extraction for human activity recognition, Knowl. -Based Syst. 
229 (2021), 107338, https://doi.org/10.1016/j.knosys.2021.107338. 

[65] A.O. Ige, M.H.M. Noor, WSense: a robust feature learning module for lightweight 
human activity recognition, ArXiv Prepr. ArXiv230317845 (2023). 

[66] A. Reiss, D. Stricker, Introducing a new benchmarked dataset for activity 
monitoring, Proc. - Int. Symp. Wearable Comput. Iswc. (2012) 108–109, https:// 
doi.org/10.1109/ISWC.2012.13. 

[67] J.R. Kwapisz, G.M. Weiss, S.A. Moore, Activity recognition using cell phone 
accelerometers, ACM SIGKDD Explor. Newsl. 12 (2011) 74–82, https://doi.org/ 
10.1145/1964897.1964918. 

[68] M. Gil-Martín, R. San-Segundo, F. Fernández-Martínez, J. Ferreiros-López, Time 
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