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Abstract
Wearable technology offers a prospective solution to the increasing demand for activity monitoring in pervasive healthcare.

Feature extraction and selection are crucial steps in activity recognition since it determines the accuracy of activity

classification. However, existing feature extraction and selection methods involve manual feature engineering, which is

time-consuming, laborious and prone to error. Therefore, this paper proposes an unsupervised feature learning method that

automatically extracts and selects the features without human intervention. Specifically, the proposed method jointly trains

a convolutional denoising autoencoder with a convolutional neural network to learn the underlying features and produces a

compact feature representation of the data. This allows not only more accurate and discriminative features to be extracted

but also reduces the computational cost and improves generalization of the classification models. The proposed method was

evaluated and compared with deep learning convolutional neural networks on a public dataset. Results have shown that the

proposed method can learn a salient feature representation and subsequently recognize the activities with an accuracy of

0.934 and perform comparably well to the convolutional neural networks.
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1 Introduction

Aging is commonly associated with loss of independence

and impairment in physical functioning which is a major

indicator of frailty. Physical activity plays a major role in

healthy aging and is essential to maintain healthy func-

tioning in elderly people [1]. In particular, physical activity

can reduce the negative impact of frailty and reduce the

risk of frailty in older adults [2]. It is also shown that

physical activity reduces the risk of having chronic dis-

eases such as cardiovascular disease, diabetes and osteo-

porosis [3]. In fact, a study has suggested that the efficacy

of physical activity intervention is comparable to drug

intervention in preventing and treatment of chronic dis-

eases [4].

Wearable sensor-based activity recognition is a system

that classifies gait data into human activities. Human

activities can be grouped into basic activity and activity of

daily living (ADL). Basic activity refers to basic body

movements such as walking, standing and postural transi-

tion. ADLs are complex activities that typically involve

objects such as eating, cooking and bathing. Activity

recognition systems utilize wearable sensors such as

accelerometers, gyroscopes and wireless communication to

gather users’ behavioral information which can be used to

keep track of the level of activities being performed by

users and estimate their energy expenditure. The wearable

sensors can be attached either directly to the human body

or indirectly such as embedding into clothes or wrist-

watches. The sensors generate signals when the user per-

forms activities where the signals’ characteristics describe

the user’s movement.

Activity recognition involves the use of artificial intel-

ligence techniques to effectively recognize a range of dif-

ferent activities. Typically, the recognition process

operates in two steps. First, features are extracted from

segments of sensor data from a specific time window.

Then, the features are used as inputs to machine learning

classifiers to classify the window according to its
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corresponding activity. The performance of activity

recognition is heavily dependent on the choice of features

that are used to model the classifiers. In previous studies,

numerous types of features have been used for activity

recognition with some researchers derive features directly

from the time series signal by computing heuristic and

statistical measurements and others derive frequency-do-

main features from Fourier transformed signal [5].

Heuristic features refer to features that are derived from the

intuitive understanding of how a signal pattern is produced

by an activity. For example, a walking signal exhibits a

quasiperiodic pattern while sitting posture is characterized

by a stationary signal. Time-domain features are derived by

means of statistical analysis such as mean, variance and

kurtosis. Both heuristic and time-domain features are

lightweight and simple to compute, and studies have shown

they can distinguish static postures and dynamic activities

with high accuracy.

However, the hand-crafted features that are extracted

and selected are heuristic and rely on expert knowledge of

the domain. The features may be effective in certain

specific settings, but the same features might fail to dis-

criminate the activities in a more general environment.

Furthermore, hand-crafted feature extraction and selection

are time-consuming, laborious and prone to error and might

still achieve suboptimal recognition performance. The

main objective of this work is to develop an unsupervised

feature learning method for activity recognition to elimi-

nate the need for manual feature engineering, making it

more accurate in learning the underlying features of the

data. Furthermore, the proposed method maps the sensor

data into a lower dimensionality feature space, conse-

quently, reduces the computational cost and improves

generalization. The proposed method is experimentally

validated on a public dataset of 30 subjects. The results

show that the proposed method able to effectively learn a

compact and salient feature representation of the data and

achieves high classification accuracy.

The remainder of this paper is organized as follows.

Section 2 reviews the related works. In Sect. 3, we present

the proposed methodology that consists of data collection,

signal segmentation, feature learning method and activity

recognition. Section 4 presents the experimental results

and their discussion. Finally, the conclusions are presented

in Sect. 5.

2 Related works

Numerous feature extraction methods have been proposed

for activity recognition which can be divided into super-

vised feature extraction and unsupervised feature extrac-

tion. In supervised feature extraction, features are extracted

from the segments of sensor data with known labels (la-

beled dataset). These features provide an intuitive repre-

sentation of how a signal pattern is produced by an activity.

The features are shown to be effective in classifying

physical activities [6]. Features are also extracted from

Fourier transformed signals such as spectral energy and

entropy [7]. In [8], the decision tree algorithm is used to

model time-domain and frequency-domain features such as

mean, variance skew, kurtosis, spectral centroid and peak

frequency. An artificial neural network is built to model the

mean and standard deviation of each axis of the

accelerometer for activity recognition [9]. The support

vector machine is used as a classifier for offline and online

activity recognition [10]. The features are standard devia-

tion and minimum value extracted from acceleration and

orientation angle measurements. The classification accu-

racies of the aforementioned studies are in the range of

0.850 to 0.950.

An ensemble model using a voting scheme is proposed

for activity recognition [11]. The ensemble model consists

of decision tree, logistic regression and neural network

classifiers. Besides the commonly used features, features

such as time between peaks, binned distribution are

extracted from the signals. An ensemble classifier is pro-

posed using the cascading method for activity recognition

[12]. The model consists of extremely gradient boosting

trees (XGBoost), random forest, extremely randomized

trees and softmax regression. A two-stage hierarchical

classifier is proposed using continuous hidden Markov

models for activity recognition [13]. The first stage is to

distinguish the activity data into dynamic activity and static

activity, while the second stage further distinguishes it into

the final activity class. In both studies, a more complex set

of features is extracted from the signals such as autore-

gression coefficients, signal entropy and the angle between

two vectors. Wavelet-based features were proposed for

classifying dynamic activities. However, they were not as

effective as time-domain and frequency-domain features

[14].

Feature reduction method such as principal component

analysis has been used to determine the projection direction

of the most variation in the data. The projection maximizes

the discriminability of the data to improve classification

accuracy [15]. Random forest was used to model the

reduced features. In [16], cepstral analysis is proposed to

extract powerful discriminative features in the form of

cepstral coefficients. The features were useful for distin-

guishing dynamic activities such as running, cycling and

jumping. Single and ensemble classifiers such as support

vector machine, neural network and random forest are used

to model the features. Wang et al. utilized Ensemble

Empirical Mode Decomposition (EEMD) to decompose

time series data into several elemental signals called
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intrinsic mode function (IMF). Then, features such as mean

crossing rate and autoregressive coefficients are extracted

for activity recognition [17]. Although these hand-crafted

features together with machine learning methods are

effective in classifying different activities, they require

expert knowledge and the task is difficult and laborious in

practice.

Deep learning methods have been widely used to learn

the features of the data automatically in various domains

such as medical imaging analysis [18], video game playing

[19] and cybersecurity [20]. In the domain of activity

recognition, deep learning has also been extensively

applied for classifying the sensor data into activities. In

[21], a deep convolutional neural network (CNN) is pro-

posed for classifying locomotion activities and body pos-

tures. The model consists of three layers of convolution and

max-pooling operations for feature learning, producing 192

feature maps. Similar work is found in [22], whereby a

CNN is proposed for online smartphone activity recogni-

tion. The feature learning pipeline consists of two convo-

lutional layers followed by a max-pooling layer to produce

200 feature maps. In [23], a shallow CNN is proposed for

real-time activity recognition. The proposed model consists

of a single layer of convolution and max-pooling opera-

tions producing 196 feature maps. A two-stage deep

learning model is proposed to improve the feature learning

for activity recognition [24]. The first deep learning model

is used to learn features of activity classes that are difficult

to classify, while the second model is used to classify the

other activity classes. A deep learning model using CNN

and long short-term memory is proposed for activity

recognition [25]. The proposed model consists of four

convolutional layers for feature learning, producing 64

feature maps that are fed to recurrent dense layers to model

the temporal dependencies of the features. Although CNNs

have been shown to be effective in learning discriminative

features for activity recognition, they are purely supervised

learning methods which cannot leverage the unlabeled

data.

The unsupervised feature extraction methods extract

features from raw data without labels (or known as an

unlabeled dataset). It is especially useful in the activity

recognition application where labeled datasets are rare and

difficult to obtain due to time-consuming annotation pro-

cesses. Autoencoder is a type of unsupervised neural net-

works that can be used to learn feature representation of

data. It learns the feature representation by training the

network to reconstruct the data at the output layer. An

improved autoencoder is proposed to effectively extract the

features from the inertial sensor data for activity recogni-

tion [26]. The autoencoder allows the steepness of the

activation function to be controlled, consequently reducing

overfitting the data. In [27], a stacked denoising

autoencoder is proposed to learn the feature representation

of inertial sensor data for activity recognition. The stacked

denoising autoencoder is capable of extracting more robust

features by undoing the effect of the corruption process

applied to the data. Then, the features are modeled using

Light Gradient Boosting Machine for activity classifica-

tion. A full neural network pipeline is proposed using

stacked denoising autoencoder for feature learning and

activity recognition [28]. However, one of the major

drawbacks of the proposed models is the relatively long

training time because the training is performed one layer at

a time. In [29], an unsupervised feature learning method

based on denoising autoencoder for activity recognition is

proposed. A penalty term based on Kullback–Leibler

divergence is added to the cost function to encode a salient

feature representation. Although the aforementioned works

extract effective features, the denoising autoencoders do

not incorporate convolutional layers in the models. As a

result, the local temporal structure is not sufficiently

leveraged to learn the salient feature representation of the

sensor data. The studies also do not consider transitional

activities which are important to provide early preventive

measures of fall accidents.

In this paper, by extending our preliminary work in [29],

an unsupervised feature learning pipeline based on con-

volutional denoising autoencoder (CDAE) is proposed. The

CDAE incorporates convolutional and pooling layers to

maximally leverage the local temporal structure of the data

for feature extraction. In addition, the CDAE is jointly

trained with a CNN to force the encoding layer to encode a

more salient feature representation of the data. As a result,

more discriminative features can be extracted to achieve

high classification accuracy. Furthermore, the proposed

method produces a compact feature representation by

removing unimportant characteristics of the data. This

reduces overfitting and improves the generalization of the

classification model. Unlike previous works, this work also

deals with various lengths of transitional activity signals in

activity recognition. The proposed method is evaluated

using a public dataset. In addition, we have implemented

deep learning models that can automatically extract fea-

tures to compare with the proposed method. The experi-

mental results show that the proposed method can achieve

a high classification accuracy and its performance is

comparable to the deep learning models.

3 Proposed methodology

The proposed methodology consists of the following pha-

ses: data collection, signal segmentation, unsupervised

feature learning and activity classification as shown in

Fig. 1. In the data collection, a wearable device embedded
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with an inertial sensor records the measurement of body

motion of the subjects while performing the activities of

interest. The wearable device is attached to the waist of the

subjects to acquire the major body movement [30]. The

activities are the four basic activities which are walking,

standing, sitting and lying down, and also the transitions

between the body postures such as stand-to-sit, sit-to-stand,

sit-to-lie and lie-to-sit. The following sections explain the

key phases of the proposed methodology.

3.1 Signal segmentation

In activity recognition, the signals need to be segmented

into windows for classification. The most widely used

signal segmentation method is the fixed sliding window

whereby the signals are segmented into windows of a

fixed-size with a degree of overlap [31]. It should be noted

that the size of the window segmentation defines the size of

the input data of the CDAE. However, one challenge of

fixed sliding window is to determine the optimum window

size. A short window size could truncate the signals into

multiple windows, while a larger window could contain

multiple activity signals. In both cases, misclassification

could happen especially for transitional activities where the

length of transitional activity signals varies depending on

the time to complete the activity [32]. In order to overcome

the limitation of the fixed sliding window method, we use

the adaptive sliding window for the signal segmentation

[33]. The adaptive sliding window defines an initial win-

dow size that can be expanded to accommodate activity

signals that are longer than the initial window. The size of

the expansion is defined by the expansion factor. There-

fore, the transitional activity signals can be segmented

according to the length of the signals. Then, the linear

interpolation is used to resize the windows with a different

number of samples to the size of the initial window. Let si
denote a window segmentation i which represents an input

vector of the proposed model. A series of window seg-

mentation, S, is given as follows.

S ¼ xc0; x
c
1; . . .; x

c
N

� �
ð1Þ

where N is the number of window segmentation. A motion

sensor such as a triaxial accelerometer generates three

values which represent the measurement along different

axes, X-axis, Y-axis and Z-axis. Let the input channels are

denoted by c. The three axes data from a triaxial

accelerometer are given as follows.

xxi ¼ xxj ; x
x
jþ1; . . .; x

x
jþK�1

h i

xyi ¼ xyj ; x
y
jþ1; . . .; x

y
jþK�1

h i

xzi ¼ xzj ; x
z
jþ1; . . .; x

z
jþK�1

h i
ð2Þ

where K is the size of the initial window segmentation. The

input shape of the CDAE is K � c.

3.2 Unsupervised feature learning

The unsupervised feature learning is based on denoising

autoencoder which is a variant of autoencoder. The block

diagram of the proposed method is given in Fig. 2.

Autoencoders learn a feature representation of data under

reconstruction tasks using unlabeled data. Autoencoder

consists of encoder and decoder whereby the encoder

compresses the input data by propagating the data from one

hidden layer to the subsequent layers. This process results

in a feature representation encoded in the encoding layer.

The decoder takes the encoded features to reconstruct the

input data. Since a constraint is imposed on the encoding

layer such as limiting the number of neurons, the autoen-

coders are forced to learn the salient feature representation

of the data. In order to improve the reconstruction task, a

discriminative model is integrated into the unsupervised

feature learning pipeline whereby the discriminative model

is fed with the reconstructed data and input data and

learned to distinguish between the real and fake signals.

A denoising autoencoder attempts to learn a robust

feature representation by introducing stochastic noise to the

input data, and the autoencoder is required to reconstruct

Fig. 1 The block diagram of the proposed method
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the data from corrupted data [34]. The process of denoising

the data allows a more effective feature representation to

be learned by the autoencoder. In this research, the cor-

rupted input signal, �xci is obtained by adding uniform ran-

dom noise, x to the input signal.

�xci ¼ xci þ x ð3Þ

Traditionally, denoising autoencoders are built using

fully connected layers. In this research, we built the

denoising autoencoder using 1D convolutional and 1D

max-pooling layers due to their ability to handle time series

data [35]. The 1D convolution operation leverages the local

temporal structure of the signals, and the 1D max-pooling

operation makes the network invariance to small transla-

tions in the input signal [36]. The 1D convolutional and 1D

max-pooling layers are stacked alternately, to extract fea-

tures in a hierarchical manner whereby the initial layers

extract the primitive features while the deeper layers

extract complex ones by combining the extracted basic

features. As a result, a salient feature representation can be

learned by the CDAE.

The CDAE was designed with the aim to provide a small

set of features for activity classification. We designed two

architectures of CDAEs, and the parameters of the CDAEs

are given in Tables 1 and 2. The encoders consist of 1D

convolutional and 1D max-pooling layers which are

stacked after each other. The kernel size of the first 1D

convolutional layer is 11, and the kernel size is decreasing

as the network gets deeper to the last 1D convolutional

layer which employs a kernel of 3 (CDAE A) and 5 (CDAE

B). The input of each 1D convolutional layer is padded

with zeros. Thus, the output shape is the same as the input

shape. To reduce the size of the outputs by half, the kernel

size of the 1D max-pooling layers is set to 2. The first 1D

convolutional layer has a depth value (number of feature

maps) of 10, and the depth value is progressively increased

to 50 (CDAE A) and 40 (CDAE B) as the network gets

deeper to the last 1D convolutional layer. The number of

encoded features is defined by the output shape at the

encoding layer which is determined by the parameters of

the 1D convolution and 1D max-pooling operations. The

encoding layer of CDAE A and CDAE B encodes features

of size 3� d and 6� d, where d is the depth of the

encoding layer or specifically the number of kernels at this

layer. All 1D convolutional layers use exponential linear

unit (ELU) activation function. The layer structure of the

decoder is symmetric to the encoder. Up-sampling layers

are used to increase the size of the outputs. The deep model

Fig. 2 The unsupervised feature

learning pipeline

Table 1 The architecture and parameters of CDAE A

Layer Kernel size Stride Output shape

1 Input 100 9 3

2 Conv 11 1 100 9 10

3 Max-pool 2 2 50 9 10

4 Conv 9 1 50 9 20

5 Max-pool 2 2 25 9 20

6 Conv 7 1 25 9 30

7 Max-pool 2 2 12 9 30

8 Conv 5 1 12 9 40

9 Max-pool 2 2 6 9 40

10 Conv 3 1 6 9 50

11 Max-pool 2 2 3 9 50

12 Conv 3 1 3 9 d

13 Conv 3 1 3 9 50

14 Up-sample 2 2 6 9 50

15 Conv 3 1 6 9 40

16 Up-sample 2 2 12 9 40

17 Conv 5 1 12 9 30

18 Up-sample 2 2 25 9 30

19 Conv 7 1 25 9 40

20 Up-sample 2 2 50 9 40

21 Conv 9 1 50 9 50

22 Up-sample 2 2 100 9 50

23 Conv 11 1 100 9 3

Layer 1–11 represent the encoder. Layer 12 is the encoding layer. The

decoder is symmetric to the encoder in terms of the layer structure
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allows the features to be learned in a hierarchical manner,

resulting in more discriminative features to be extracted

from the data.

The CDAEs are trained by regressing to the original

input signals. Specifically, we train the CDAEs to mini-

mize the reconstruction loss or the mean squared error

between the input signals and the reconstructed signals.

However, the reconstruction task is inherently multimodal,

and our experiments demonstrate that the autoencoder

could not reconstruct the shape of the signals correctly as

shown in Fig. 3 (top). As can be seen in the figure, the

magnitude of the reconstructed signals varies and far from

the original signals. This indicates that the CDAE fails to

learn the underlying structure of the data, resulting in a

non-discriminative feature representation to be encoded.

To address this issue, we propose to integrate a discrimi-

native model into the unsupervised feature learning pipe-

line (as shown in Fig. 2) and jointly train the networks to

minimize the reconstruction loss and adversarial loss [37].

The discriminative model takes the reconstructed signals

and the input signals and tries to distinguish the real from

the fake signals. This allows the CDAEs to learn to

reconstruct the signals as real as possible. Let x denote the

multi-channel input signals, and x̂ is the corresponding

reconstructed signals. The cost function is given as

J ¼ Lr x; x̂ð Þ þ kLa ð4Þ

where Lr is the reconstruction loss which is defined as

Lr x; x̂ð Þ ¼
XK

j¼0

xj � x̂j
� �2 ð5Þ

k is the scaling factor of adversarial loss, and La is the

adversarial loss which is defined as

La ¼ � ln D xð Þð Þ þ ln 1� D x̂ð Þð Þ½ � ð6Þ

where D is the discriminative model. We build a convo-

lutional neural network with two layers of 1D convolution

and max-1D pooling operations followed by two hidden

fully connected layers. The output layer has two nodes

corresponding to real and fake signals. All 1D convolu-

tional layers use ELU activation function. Figure 3 (bot-

tom) shows a reconstructed signal by the CDAE trained

with the discriminative model.

3.3 Activity classification

Once the CDAE is trained, the discriminative model is

removed, and the decoder is replaced with a softmax

classifier. The encoder provides a set of features to the

classifier for activity recognition as shown in Fig. 4. Here,

we consider supervised fine-tuning where the network is

trained to minimize the prediction error of activity classi-

fication. During training, the layers of the encoder are

frozen, and the weights of the classifier are fine-tuned. The

activity classes are used as targets. The classifier is built

using two hidden fully connected layers with ELU acti-

vation function followed by a softmax output layer. The

source code of the proposed model can be found in

Github1.

4 Experiments and results

4.1 Experimental setup

We performed the experiments using a public dataset [38].

The dataset contains activity signals collected from 30

subjects using a smartphone inertial sensor. The smart-

phone was attached to the front waist. The dataset includes

basic activities such as walking, standing, sitting, lying

down and the transitions between two postures. Table 3

shows the number of samples for each activity class. The

inertial sensor data were normalized to the range of - 1

and 1. The initial window size, K, was set to 100, and both

the overlapping and expansion factors were set to 0.5. The

dataset was split into training part with data from 20 sub-

jects and test part with data from the remaining 10 subjects.

Table 2 The architecture and parameters of CDAE B

Layer Kernel size Stride Output shape

1 Input 100 9 3

2 Conv 11 1 100 9 10

3 Max-pool 2 2 50 9 10

4 Conv 9 1 50 9 20

5 Max-pool 2 2 25 9 20

6 Conv 7 1 25 9 30

7 Max-pool 2 2 12 9 30

8 Conv 5 1 12 9 40

9 Max-pool 2 2 6 9 40

10 Conv 3 1 6 9 d

11 Conv 3 1 6 9 40

12 Up-sample 2 2 12 9 40

13 Conv 5 1 12 9 30

14 Up-sample 2 2 25 9 30

15 Conv 7 1 25 9 20

16 Up-sample 2 2 50 9 20

17 Conv 9 1 50 9 10

18 Up-sample 2 2 100 9 10

19 Conv 11 1 100 9 3

Layer 1–9 represent the encoder. Layer 10 is the encoding layer. The

decoder is symmetric to the encoder in terms of the layer structure
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Corrupt training data were created by adding uniform

random noise in the interval of �0:05; 0:05ð Þ to the training
data. The CDAE was trained on 80 batches of 16 input

signals for 1000 epochs using Adam optimizer. Early

stopping and dropout techniques were used to prevent

overfitting the training data. The learning rate and k were

set to 0.001. We performed two experiments of activity

recognition. The first experiment is activity recognition

with accelerometer data only and the second experiment

using both accelerometer and gyroscope data.

The classifier of the network was fine-tuned using the

same approach. But this time, the original training data

were fed to the network and the activity classes were set as

the target. Adam optimizer was used to fine-tune the

weights, and early stopping and dropout techniques were

used to prevent overfitting the data. We evaluated the

performance of the proposed method using recall, preci-

sion, F-score and accuracy. Recall is defined as the ability

of the classifier to identify the activity class of a window

segmentation. Precision reflects the ability of the classifier

to distinguish an activity class from all the other classes. F-

score is the average of recall and precision. Accuracy is the

fraction of correctly classified window segmentation. The

evaluation metrics are given by

Fig. 3 The reconstructed

signals without (top) and with

(bottom) jointly trained CDAE

Fig. 4 The activity classification pipeline

Table 3 Number of samples in different classes

Activity Number of samples

Walking 1176

Standing 1533

Sitting 1329

Lying down 1385

Stand-to-sit 60

Sit-to-stand 60

Sit-to-lie 60

Lie-to-sit 60
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Recall ¼ TP

TP þ FN
ð7Þ

Precision ¼ TP

TP þ FP
ð8Þ

F-score ¼ 2� Recall� Precision

Recallþ Precisionð Þ ð9Þ

Accuracy ¼ TPþTN

TPþ FPþTNþ FN
ð10Þ

where TP is true positive, TN is true negative, FP is false

positive and FN is false negative.

4.2 Autoencoder architecture

We analyze the performance of both CDAE architectures.

We experimented with depth, d ¼ 1; 2; 3; 4; 5; 6; 7f g in

order to determine the best architecture for feature learn-

ing. Figures 5 and 6 illustrate the classification accuracy

variation versus the increase in d for both experiments. The

value of d is the number of kernels at the encoding layer.

Hence, d determines the number of features for activity

recognition. Therefore, it has a significant influence on

classification accuracy. As can be seen in Figs. 5 and 6, the

classification accuracy is relatively lower when the value of

d is less or equals 3 and stabilizes beyond 3. Figure 5 also

shows that increasing the value of d does not necessarily

lead to an increase in classification accuracy. In the first

experiment, the highest classification accuracy is 0.908 for

CDAE A and 0.907 for CDAE B, while in the second

experiment, the highest classification accuracy is 0.897 for

CDAE A and 0.914 for CDAE B. Thus, d ¼ 5 and d ¼ 4

are proposed for CDAE A and CDAE B, respectively, for

activity recognition with accelerometer only. For activity

recognition with accelerometer and gyroscope, d ¼ 6 and

d ¼ 7 are proposed for CDAE A and CDAE B.

4.3 Classification performance

The classification performance of the proposed CDAEs in

classifying each activity is analyzed. We have additionally

performed a threefold user-based cross-validation to vali-

date the classification performance. In general, the pro-

posed CDAEs performed well in classifying most of the

activities considered in the experiments. Stand-to-sit (A3)

and sit-to-stand (A5) activities have relatively lower per-

formance than other activities for both CDAEs, and it is

observed that most of the misclassified samples are clas-

sified as walking activity (A1). This is because the activi-

ties share similar characteristics where they involve

dynamic movement in an upright position. Standing

activity (A2) is also easily misclassified as sitting activity

(A4) and vice versa. As can be seen in Tables 4 and 5,

8.8% and 7.9% of standing samples are misclassified as

sitting, and 9.9% and 7.1% of sitting samples are mis-

classified as standing. Tables 6 and 7 show that 9.0% and

7.9% of standing samples are misclassified as sitting, and

8.1% and 6.3% of sitting samples are misclassified as

standing. The reason is that both activities have similar

signal patterns, and as a result, the features that have been

learned by the autoencoders have similar representation.Fig. 5 Accuracy of activity recognition of CDAE A (top) and CDAE

B (bottom) using accelerometer only

Fig. 6 Accuracy of activity recognition of CDAE A (top) and CDAE

B (bottom) using both accelerometer and gyroscope
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The recall, precision and F-score measures of each activity

for both CDAEs are given in Figs. 7 and 8. Overall, the

highest classification accuracies are achieved by CDAE B

which are 0.932 and 0.934. Table 8 shows a comparison of

the classification accuracy of the proposed method.

We have also analyzed the influence of kernel size on

the performance of activity recognition. A smaller kernel

size allows the CDAE to learn highly local and complex

features in the data, while a larger kernel size means a

larger receptive field thereby more generic features will be

learned. However, the CDAE will have more information

to capture the trend of the data. This experiment was car-

ried out by varying the kernel sizes of the convolutional

Table 4 Confusion matrix of activity recognition using accelerometer

only (Autoencoder A)

A1 A2 A3 A4 A5 A6 A7 A8

A1 1085 34 10 1 50 0 0 0

A2 36 1276 1 127 2 0 0 0

A3 8 2 47 1 1 1 0 0

A4 2 125 0 1124 1 0 0 0

A5 8 1 1 0 50 0 0 0

A6 0 0 0 1 0 55 4 0

A7 0 0 0 1 0 1 1294 5

A8 1 0 0 0 5 0 1 53

The activities are labeled as A1 (walking), A2 (standing), A3 (stand-

to-sit), A4 (sitting), A5 (sit-to-stand), A6 (sit-to-lie), A7 (lying down)

and A8 (lie-to-sit)

Table 5 Confusion matrix of activity recognition using accelerometer

only (Autoencoder B)

A1 A2 A3 A4 A5 A6 A7 A8

A1 1114 34 10 5 12 5 0 0

A2 39 1282 0 115 5 1 0 0

A3 5 0 53 0 0 2 0 0

A4 0 90 2 1157 2 0 1 0

A5 5 0 1 0 54 0 0 0

A6 0 0 3 0 0 54 3 0

A7 0 0 0 25 0 2 1274 0

A8 1 0 0 0 0 0 0 59

The activities are labeled as A1 (walking), A2 (standing), A3 (stand-

to-sit), A4 (sitting), A5 (sit-to-stand), A6 (sit-to-lie), A7 (lying down)

and A8 (lie-to-sit)

Table 6 Confusion matrix of activity recognition using accelerometer

and gyroscope (Autoencoder A)

A1 A2 A3 A4 A5 A6 A7 A8

A1 1114 16 21 6 15 6 1 1

A2 61 1242 2 130 4 1 2 0

A3 14 1 41 0 1 1 0 2

A4 2 102 4 1138 4 1 0 1

A5 11 1 2 0 41 1 0 4

A6 2 0 1 0 0 56 0 1

A7 1 0 2 0 0 1 1296 1

A8 3 0 0 1 7 0 2 47

The activities are labeled as A1 (walking), A2 (standing), A3 (stand-

to-sit), A4 (sitting), A5 (sit-to-stand), A6 (sit-to-lie), A7 (lying down)

and A8 (lie-to-sit)

Table 7 Confusion matrix of activity recognition using accelerometer

and gyroscope (Autoencoder B)

A1 A2 A3 A4 A5 A6 A7 A8

A1 1132 26 4 1 15 0 0 2

A2 56 1265 1 115 5 0 0 0

A3 15 0 40 0 2 3 0 0

A4 1 79 1 1170 0 1 0 0

A5 13 0 1 0 42 0 0 4

A6 0 0 0 0 0 58 0 2

A7 0 0 0 0 0 5 1294 2

A8 2 0 0 0 2 0 0 56

The activities are labeled as A1 (walking), A2 (standing), A3 (stand-

to-sit), A4 (sitting), A5 (sit-to-stand), A6 (sit-to-lie), A7 (lying down)

and A8 (lie-to-sit)

Fig. 7 The recall, precision and F-score measures of CDAE A (top)

and CDAE B (bottom) using accelerometer only
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layers of CDAE B. Tables 9 and 10 show the classification

accuracy of CDAE B with different kernel sizes. It is found

that the kernel size does not have a significant influence on

the performance of activity recognition. Using smaller

kernel sizes, the classification accuracy is decreased

slightly. However, a smaller kernel size reduces the

number of weights and consequently reduction in compu-

tational cost.

4.4 Comparison with machine learning models

We compare the performance of the proposed method with

the conventional method whereby the hand-crafted features

are extracted and modeled using machine learning tech-

niques. In this work, we extract the commonly used fea-

tures such as mean, variance, mean crossing rate and signal

magnitude area [30]. We also extract absolute mean trend

and mean trend features to capture the local trend of the

signal within the segmentation which has shown to be

effective in classifying the transitional activities [33]. The

features are extracted from the three axes of acceleration

and gyroscope data and also from the derived acceleration

data that represent the sagittal plane, transverse plane and

frontal plane. A total of 54 features have been extracted

from the data. Then, feature selection is carried out using

filter method based on the ANOVA F-value to rank the

features with respect to their relevance. Three single clas-

sifiers (K-nearest neighbors, decision tree and support

vector machine) and four ensemble classifiers (AdaBoost,

Stacking, Random Forest and XGBoost) are built for the

activity recognition. In order to determine the best set of

features, first, the classifiers are modeled using the top 10%

features. Then, the top 20% features are used to model the

classifiers, and the experiments are repeated until the top

90% features. The set of features that produces the best

classification accuracy is selected. From the experimental

results, it is observed that the classification accuracies

achieved by the machine learning models are lower than

the proposed method. As shown in Table 11, the highest

classification accuracies are achieved by XGBoost and

Random Forest which are 0.904 (accelerometer only) and

0.922 (accelerometer and gyroscope), respectively.

4.5 Comparison with deep learning models

We compare the performance of the proposed method with

deep learning convolutional neural networks. The deep

learning models that were built have four convolution and

max-pooling layers followed by flattening operation, two

Fig. 8 The recall, precision and F-score measures of CDAE A (top)

and CDAE B (bottom) using accelerometer and gyroscope

Table 8 Comparison of classification accuracies of the proposed

method

Architecture Classification accuracy

CDAE A

(Accelerometer only)

0.920

CDAE B

(Accelerometer only)

0.932

CDAE A

(Accelerometer and gyroscope)

0.919

CDAE B

(Accelerometer and gyroscope)

0.934

Table 9 Comparison of classification accuracy of CDAE B using

accelerometer only with different kernel sizes

Kernel size Classification accuracy

11, 9, 7, 5, 3 0.932

9, 7, 5, 3, 3 0.927

7, 5, 3, 3, 3 0.920

Table 10 Comparison of classification accuracy of CDAE B using

accelerometer and gyroscope with different kernel sizes

Kernel size Classification accuracy

11, 9, 7, 5, 3 0.934

9, 7, 5, 3, 3 0.926

7, 5, 3, 3, 3 0.916
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fully connected layers and the softmax output layer. The

deeper layers of the models were designed to have more

kernels (depth) than the initial layers. This will allow the

networks to learn a large number of high-level features for

activity recognition. We built two deep learning models in

which both models have the same number of layers. Each

layer has the same kernel size and number of neurons but

with different depth values at the convolutional layers. The

architecture of the deep learning models is given in

Table 12. Initially, we set the depth values to 5, 10, 15 and

20 (the model is referred to as M1). The model is trained

with cross-entropy loss using Adam optimizer. The clas-

sification accuracy using accelerometer only is 0.931 which

is 0.001 lower than the proposed method while classifica-

tion accuracy using both accelerometer and gyroscope is

0.932 which is 0.002 lower than the proposed method.

Then, the depth values of the convolutional layers are

increased to 10, 20, 30 and 40 (the model is referred to as

M2) in order to learn more features. The model is trained

using the same approach. It is observed that the classifi-

cation accuracy of the model is increased to 0.941 for both

experiments which is slightly higher than the proposed

method.

Although the deep learning model achieved a slightly

higher accuracy, it requires a large feature vector for fea-

ture learning and classification. As shown in the experi-

ment, model M2 requires a feature vector of 240 6� 40ð Þ.
This results in the increase in feature dimension which in

turn increases the computational cost of the model. In

comparison, the depth of the proposed CDAE is relatively

much smaller with the depth value of 4 and 7 only at the

encoding layer, resulting in a feature vector of 24 6� 4ð Þ
and 42 6� 7ð Þ, respectively. This allows the feature

dimension and computational cost of the model to be

reduced significantly. Furthermore, unlike convolutional

neural networks where fully connected layers are used as a

classifier, the proposed method allows other preferred

machine learning algorithms such as decision tree, Naı̈ve

Table 11 Comparison of

classification accuracy of

machine learning models

Accelerometer Accelerometer and gyroscope

Machine learning model Classification accuracy Machine learning model Classification accuracy

K-nearest neighbors 0.863 K-nearest neighbors 0.912

Decision tree 0.854 Decision tree 0.843

Support vector machine 0.867 Support vector machine 0.898

AdaBoost 0.871 AdaBoost 0.908

Stacking 0.863 Stacking 0.914

Random forest 0.858 Random forest 0.922

XGBoost 0.904 XGBoost 0.921

Table 12 The architecture of

the deep learning models
Layer Kernel size Depth (d) M1/M2 Stride Output shape

1 Input 3 100 9 3

2 Conv1D 9 5/10 1 100 9 d

3 Max-pool 2 2 50 9 d

4 Conv1D 7 10/20 1 50 9 d

5 Max-pool 2 2 25 9 d

6 Conv1D 5 15/30 1 25 9 d

7 Max-pool 2 2 12 9 d

8 Conv1D 3 20/40 1 12 9 d

9 Max-pool 2 2 6 9 d

10 Flatten

Layer Unit

M1/M2

Output shape

11 FC 60/120 60/120

12 FC 30/60 30/60

13 FC (output) 10 10

FC fully connected
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Bayes or support vector machine to be used to model the

learned features for classification. These lightweight clas-

sifiers could reduce the number of parameters and conse-

quently the model size. The performance of the deep

learning models in terms of recall, precision and F-score is

given in Figs. 9 and 10. Table 13 shows the comparison of

classification accuracy of the deep learning models.

4.6 Comparison with state-of-the-art methods

In comparison with the state-of-the-art methods, the pro-

posed method appears promising in several regards.

Table 14 reports a summary of the state-of-the-art meth-

ods. First, its performance is comparable if not better with

the previously proposed methods. In [26], a deep belief

network consists of two autoencoders in sequence followed

by one backpropagation layer is proposed for activity

recognition. The autoencoders accept the features extracted

from the signals as input, compress and reconstruct the

input data to produce a set of features that will be used to

classify the activities. The proposed method is evaluated on

a dataset consisting of measurements of inertial and mag-

netic sensors attached to five different parts of the body.

Classification accuracy of 0.949 is achieved which is

slightly higher than our proposed method’s accuracy.

However, the proposed method utilizes an additional sen-

sor and multiple sensor attachment which might impede the

activity of daily living.

In [28], a full neural network pipeline is proposed using

a stacked denoising autoencoder for activity recognition.

The stacked denoising autoencoder consists of two hidden

fully connected layers with 1000 units in each layer. The

square error loss with Kullback–Leibler divergence as the

regularizer is used to train the network. The experiments

were carried out on a dataset collected from 12 subjects,

each carrying a mobile phone integrated with accelerom-

eter, gyroscope, magnetometer and barometer sensors. The

proposed model recorded the highest classification accu-

racy of 0.940. It is noted that the classification accuracy is

reduced to 0.925 when activity recognition is performed

using two sensors (accelerometer and barometer). To fur-

ther improve the performance, the network parameters are

fine-tuned by increasing the number of hidden units to

1500. The classification accuracy is slightly improved by

0.003.

In [27], a stacked denoising autoencoder is proposed to

extract relevant features from activity signals. Then, the
Fig. 9 The recall, precision and F-score measures of model M1 (top)

and model M2 (bottom) using accelerometer

Fig. 10 The recall, precision and F-score measures of model M1 (top)

and model M2 (bottom) using accelerometer and gyroscope

Table 13 Comparison of classification accuracy of the deep learning

models

Architecture Classification accuracy

Model M1

(Accelerometer only)

0.931

Model M1

(Accelerometer and gyroscope)

0.932

Model M2

(Accelerometer only)

0.941

Model M2

(Accelerometer and gyroscope)

0.941
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light gradient boosting is used to model the features for

activity recognition. The stacked denoising autoencoder

consists of three hidden fully connected layers with 400

units in the first hidden layer, 200 units in the second

hidden layer and 40 units in the third hidden layer. The

mean square error loss is used to train the network. The

proposed model is evaluated on four datasets. The first

dataset contains inertial magnetic and air pressure data, and

the classification accuracy is recorded at 0.957. The second

dataset is derived from the first dataset by removing the air

pressure sensor. The recorded classification accuracy is

reduced to 0.937. The third dataset contains only dynamic

and static activities, while the fourth dataset contains only

transitional activities. Both datasets were collected using

an inertial sensor only. The proposed models recorded the

highest classification accuracies of 0.982 and 0.963. It has

to be noted that unlike our proposed method, the experi-

ments were conducted by separating the transitional

activity classes from the basic activity classes. Therefore, it

is difficult to conclude if the models actually perform

better. Furthermore, the local temporal structure was not

leveraged because the convolutional layer was not incor-

porated in the proposed autoencoders [26–28].

5 Conclusion

In this paper, we propose an unsupervised feature learning

method based on convolutional denoising autoencoder for

automatically extracting discriminative features from tri-

axial accelerometer data to eliminate the need for manual

feature engineering. In the proposed method, the convo-

lutional and pooling layers are exploited to maximally

leverage the local structure of the data. Furthermore, we

propose a joint training approach to enhance the recon-

struction task. As a result, the proposed method able to

learn a more salient feature representation of the data.

Experimental results show that the proposed method

achieves a higher classification accuracy than the machine

learning-based techniques. In comparison with deep

learning models and state-of-the-art methods, the proposed

method achieves a comparable classification accuracy

without requiring a large number of features.

Acknowledgements This work has been supported in part by the

Universiti Sains Malaysia under Short-Term Grant 304/PKOMP/

6315206.

Compliance with ethical standards

Conflict of interest The authors declare that they have no conflict of

interest.

References

1. Landi F, Onder G, Carpenter I et al (2007) Physical activity

prevented functional decline among frail community-living

elderly subjects in an international observational study. J Clin

Epidemiol 60:518–524. https://doi.org/10.1016/j.jclinepi.2006.

09.010

2. Jansen FM, Prins RG, Etman A et al (2015) Physical activity in

non-frail and frail older adults. PLoS ONE 10:e0123168. https://

doi.org/10.1371/journal.pone.0123168

3. Durstine JL, Gordon B, Wang Z, Luo X (2013) Chronic disease

and the link to physical activity. J Sport Health Sci 2:3–11.

https://doi.org/10.1016/j.jshs.2012.07.009

4. Naci H, Ioannidis JPA (2013) Comparative effectiveness of

exercise and drug interventions on mortality outcomes:

metaepidemiological study. BMJ 347:f5577. https://doi.org/10.

1136/bmj.f5577

5. Lara OD, Labrador MA (2013) A survey on human activity

recognition using wearable sensors. IEEE Commun Surv Tutor

15:1192–1209. https://doi.org/10.1109/SURV.2012.110112.

00192

6. Suto J, Oniga S, Lung C, Orha I (2018) Comparison of offline and

real-time human activity recognition results using machine

learning techniques. Neural Comput Appl. https://doi.org/10.

1007/s00521-018-3437-x

7. Rosati S, Balestra G, Knaflitz M (2018) Comparison of different

sets of features for human activity recognition by wearable sen-

sors. Sensors 18:4189. https://doi.org/10.3390/s18124189

8. Parkka J, Ermes M, Korpipaa P et al (2006) Activity classification

using realistic data from wearable sensors. IEEE Trans Inf

Technol Biomed 10:119–128. https://doi.org/10.1109/TITB.

2005.856863

9. Kwon M-C, Choi S (2018) Recognition of daily human activity

using an artificial neural network and smartwatch. Wirel

Table 14 Classification accuracy and description of state-of-the-art methods

Relevant study Classification

accuracy

Description

Wang [26] 0.949 Activity recognition system with multiple wearable sensors

Gao et al. [27] 0.943 The classification accuracy dropped when two sensor measurements were used in activity recognition

Gu et al. [28] 0.982 The experiments were conducted by separating the transitional activity classes from the basic activity

classes

Proposed

method

0.934 Use of convolutional layers with max-pooling layers to learn a more salient feature representation

Neural Computing and Applications

123

Content courtesy of Springer Nature, terms of use apply. Rights reserved.



Commun Mob Comput 2018:2618045. https://doi.org/10.1155/

2018/2618045

10. Fuentes D, Gonzalez-Abril L, Angulo C, Ortega JA (2012)

Online motion recognition using an accelerometer in a mobile

device. Expert Syst Appl 39:2461–2465. https://doi.org/10.1016/

j.eswa.2011.08.098

11. Catal C, Tufekci S, Pirmit E, Kocabag G (2015) On the use of

ensemble of classifiers for accelerometer-based activity recogni-

tion. Appl Soft Comput 37:1018–1022. https://doi.org/10.1016/j.

asoc.2015.01.025

12. Xu S, Tang Q, Jin L, Pan Z (2019) A cascade ensemble learning

model for human activity recognition with smartphones. Sensors.

https://doi.org/10.3390/s19102307

13. Ronao CA, Cho S-B (2017) Recognizing human activities from

smartphone sensors using hierarchical continuous hidden Markov

models. Int J Distrib Sens Netw 13:1550147716683687. https://

doi.org/10.1177/1550147716683687

14. Preece SJ, Goulermas JY, Kenney LPJ, Howard D (2009) A

comparison of feature extraction methods for the classification of

dynamic activities from accelerometer data. IEEE Trans Biomed

Eng 56:871–879. https://doi.org/10.1109/TBME.2008.2006190
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