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Abstract
With the development of deep learning, numerous
models have been proposed for human activity recogni-
tion to achieve state-of-the-art recognition on wearable
sensor data. Despite the improved accuracy achieved
by previous deep learning models, activity recogni-
tion remains a challenge. This challenge is often
attributed to the complexity of some specific activity
patterns. Existing deep learning models proposed to
address this have often recorded high overall recog-
nition accuracy, while low recall and precision are
often recorded on some individual activities due to
the complexity of their patterns. Some existing models
that have focused on tackling these issues are always
bulky and complex. Since most embedded systems have
resource constraints in terms of their processor, mem-
ory and battery capacity, it is paramount to propose
efficient lightweight activity recognition models that
require limited resources consumption, and still capa-
ble of achieving state-of-the-art recognition of activ-
ities, with high individual recall and precision. This
research proposes a high performance, low footprint
deep learning model with a squeeze and excitation
block to address this challenge. The squeeze and exci-
tation block consist of a global average-pooling layer
and two fully connected layers, which were placed to
extract the flattened features in the model, with best-fit
reduction ratios in the squeeze and excitation block.
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The squeeze and excitation block served as channel-wise
attention, which adjusted the weight of each channel to
build more robust representations, which enabled our
network to become more responsive to essential fea-
tures while suppressing less important ones. By using
the best-fit reduction ratio in the squeeze and excitation
block, the parameters of the fully connected layer were
reduced, which helped the model increase responsive-
ness to essential features. Experiments on three publicly
available datasets (PAMAP2, WISDM, and UCI-HAR)
showed that the proposed model outperformed exist-
ing state-of-the-art with fewer parameters and increased
the recall and precision of some individual activities
compared to the baseline, and the existing models.
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activity recognition, deep learning, wearable

1 INTRODUCTION

Advancements in pervasive computing have seen an increase in the interest of researchers in
human activity recognition. Human activity recognition has numerous application areas, such
as; elder healthcare,1 child monitoring,2 rehabilitation monitoring, and general well-being,3
among other areas. Generally, activity data can be collected using the vision-based method or
sensor-based method. The vision-based method involves placing a capturing device such as a
camera in a strategic position to capture human movement and activities. However, this method
may not work in situations where continuous monitoring of a person’s activities is essential.
Also, cameras are intrusive, and many individuals are uneasy about being continually watched.
These limitations of the vision-based method have prompted the adoption of wearable sensors for
capturing human activity data. Wearable sensors use inertia measurement units and Radio Fre-
quency Identifications to collate human activities. Wearable sensors are worn directly on subjects,
and they can be incorporated into clothing, eyewear, wristwatches, mobile devices, or placed on
the body directly.4 They are unaffected by the surroundings and have the potential to improve
accuracy. Furthermore, wearable sensors cannot put users’ privacy at risk. As a result, wearable
sensors are better for recognizing human activities.5,6 However, the recognition task is difficult
due to the vast number of sensor modalities, noisy data, variances in the spatial and tempo-
ral dimensions of the feature space between people,7 and also, the variability when a subject or
different subjects perform the same task at various times, among other factors.8 Examples of wear-
able sensors include accelerometers, gyroscopes, magnetometers, and others. Various machine
learning models have been proposed to recognize the activities collected using these sensors;
an example of such can be seen in Sani et al.9 where the authors used K-Nearest Neighbor for
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classification. Others include Random Forest,10 Support Vector Machine (SVM),11 and Decision
Tree,12 among many others. Before machine-learning techniques can be used for classification,
features of the data must be extracted. Since the process of extracting features manually from
wearable sensor data is laborious,13 recent HAR researchers have adopted deep learning for
activity classification.

Deep learning models can automatically extract features from wearable sensor datasets14

since it allows the model to learn all layers of representation greedily. For activity recognition,
researchers have proposed several deep learning models. Even though these deep learning models
have achieved state-of-the-art recognition of the overall wearable sensor data, most researchers
have focused on achieving effective feature extraction and high overall classification accuracy
without concentrating on some activities’ individual recall and precision. This is because the
recall and precision of some individual activities are sometimes low, a challenge attributed to
less training data, interclass similarity and the complexity of the pattern of such activities.15 The
precision measures the ability of a model to distinguish a particular activity class from all the
other classes, while the recall shows the performance of the model in recognizing an activity
class. To the best of our knowledge, attention mechanism has been proposed in the literature
to address this challenge, as seen in Ma et al.16 where the authors proposed a GRU with atten-
tion mechanism, also in Zeng et al.17 where the researchers proposed long short-term memory
(LSTM) with attention, and in Gao et al.18 where convolutional neural network (CNN) was
proposed with Dual attention. However, the bulky size of these models and the low individ-
ual recall and precision of some activities have made this area open to research contribution.
Also, since most embedded systems have resource constraints in terms of their processor, mem-
ory and battery capacity, it is therefore, paramount to propose efficient, lightweight activity
recognition models that require limited resource consumption. To tackle this, our research pro-
poses a high performance, low footprint predictive model for activity recognition. The model
is designed using a one-dimensional CNN with varying kernel size and a squeeze and excita-
tion block19 with best-fit reduction ratio, placed after the flattened feature map. The squeeze
and excitation (SE) block is added to automatically rescale the weights of all features accord-
ing to their relevance. The justification for the proposed model is based on four proven facts.
Firstly, one-dimensional CNN has been shown to perform better on multivariate time series
data.13,20,21 Secondly, not all data features are of the same relevance for modeling,22 and since
CNN treats all features equally, the SE block will ignore irrelevant features and prioritize rel-
evant and pertinent ones. Thirdly, the difficulty and cost of training RNN-based architectures,
where the densely arranged trainable parameters in neuron units are challenging to tune made
it paramount to propose models without RNN for Activity Recognition.23 Lastly, the flatten layer
reduces feature maps to a single one-dimensional vector; adding a SE Block after this layer can
reduce the model size while focusing on essential features. Our main contribution is in three
folds:

1. Firstly, we present a lightweight and efficient model for activity classification using
one-dimensional CNN with varying kernel sizes and SE Block with best-fit reduction ratio to
boost the importance of the discriminative features.

2. Secondly, we experimented on three public datasets to achieve overall state-of-the-art recog-
nition performance.

3. Thirdly, we addressed the issues of low recall and precision on individual activities with
complex patterns and overall performance using a smaller deep learning model with fewer
parameters.
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The remainder of this paper is organized as follows: Section 2 describes the related works,
Section 3 presents the research methodology, Section 4 presents the experimental results, and
Section 5 concludes.

2 RELATED WORKS

Recent research on activity recognition has employed wearable sensors for activity data collection,
with the most common sensor device being an accelerometer.24,25,26 An accelerometer is a device
that measures the acceleration of an entity. Other sensor devices include gyroscopes, magnetome-
ters, electrocardiography monitors, and many others.27 Some researchers have recently proposed
HAR systems developed through sensor data obtained through smartphones. An example of this
is in Ronao and Cho,28 where the authors utilized the inherent properties of one-dimensional
activity signals for activity recognition. The typical process of wearable sensor-based activity
recognition consists of three critical stages: data segmentation, feature extraction, and activity
classification.

Some researchers have proposed machine learning techniques to classify activities. For
example, in Trost et al.29 seven activities were recognized. The authors used a sensor worn on
the wrist and the hips to collect activity data and used logistic regression as the classifier. Even
though machine-learning methods functioned effectively in wearable sensor activity recognition,
the need to achieve state-of-the-art and address the relative bottlenecks of the machine learn-
ing approach has led to the adoption of deep learning for wearable sensor activity recognition.
Deep learning has been successful in a variety of fields such as image segmentation,30 image fea-
ture extraction,31 classification,32 object detection,33 and sentiment analysis,34 among other areas.
Deep learning models are generally capable of extracting features from wearable sensor datasets
automatically14 since it enables the model to learn all layers of representation jointly at the same
time. Researchers for activity recognition have proposed numerous deep learning approaches.
For example, Jantawong et al.35 proposed a sensor-based HAR to classify high-performance activ-
ities using a deep learning model called the InceptTime network. The model was tested on the
PAMAP2 dataset and achieved a classification accuracy of 88%. The following section describes
some other literature that used deep learning models for activity recognition.

2.1 Convolutional neural network models

Convolutional neural networks (CNN) have been the most adopted deep learning approach for
automatic feature extraction and classification in activity recognition. For example, the authors
in Reference 36 employed a single wrist-worn accelerometer to recognize five different physical
activities: sitting, standing, lying, walking, and running. Similarly, a wrist-worn accelerometer
was used in Reference 37 to distinguish eight different activities. Gomathi et al.38 developed a
Fuzzy associator rule-based fuzzified deep convolutional neural network architecture to classify
wearable sensor-based human activity recognition. The lambda max method was fused for weight
initialization to ensure data normalization and faster convergence. Experiments were carried out
on the UCI HAR dataset, consisting of six activities. The model achieved overall recognition accu-
racy of 97.89%; however, the accuracy on some individual activities, such as walking upstairs and
walking, was relatively low. In Rueda et al.39 a CNN model that processes each wearable sensor
data separately was proposed. The model experimented on two publicly available datasets and
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an industrial dataset. The model achieved an improved recognition accuracy on a few activities.
However, some activities with complex patterns were not well classified, and the model’s size is
a constraint.

In Qi et al.40 the authors suggested a fast and reliable deep convolutional neural network for
wearable sensor data. The model included a series of signal processing algorithms and a signal
selection module to increase accuracy and extend the content of the acquired raw data from the
accelerometer, gyroscope, and magnetometer data. Experiments on the collected dataset achieved
a classification accuracy of 95.27%. However, individual accuracy on each activity showed that
out of the 12 classified activities, the model was only able to achieve accuracies higher than 90%
in only 7 of the activities. At the same time, some had a recognition accuracy as low as 50.60%
and 75.50%. Also, in Huang et al.15 the authors focused on overcoming the problem of low accu-
racy when walking upstairs and downstairs and proposed a two-stage end-to-end convolutional
neural network. The model improved recognition accuracy on the two activities compared to a
single-stage CNN. However, since wearable sensors are often in time series format, the long-term
dependency of the time series is difficult to extract with CNN, making it difficult to increase the
model’s performance.41 For this reason, some researchers have proposed hybrid deep learning
models using Recurrent Neural Networks for activity recognition to achieve improved classifi-
cation accuracy on individual activities with complex patterns. The following section presents
these works.

2.2 Hybrid models

Several researchers have proposed adopting convolutional neural networks with recurrent neu-
ral networks. For example, Dua et al.42 proposed a multi-input CNN with Gated recurrent units
(GRU). The model concatenated three CNN-GRU architectures for classification, benchmarked
on the PAMAP2, UCI-HAR, and WISDM datasets, and achieved 95.27%, 96.20%, and 97.21% accu-
racies, respectively. However, the confusion matrix of the model on the three datasets showed
that some activities achieved low recognition performance, based on their precision, recall, and
F1 score, despite the size of the model. Challa et al.43 proposed CNN with Bidirectional-LSTM
(Bi-LSTM) to classify multi-activities on the PAMAP2 dataset and achieved recognition accu-
racy of 94.29%. However, some activities such as rope jumping, ironing, and ascending stairs still
achieved low recognition accuracy in the range of 80%. In Li et al.41 the authors introduced resid-
ual block and Bi-LSTM. The model worked by using the residual block to automatically extract
spatial features from multidimensional inertial sensor inputs, then used Bi-LSTM to retrieve the
forward and backward dependencies of the feature sequence before feeding the features into the
Softmax layer for classification. Also, the recognition accuracy of this model on some individual
activities was low. In Noor et al.44 a Conv-LSTM model which utilized the temporal features of
sensor-based activity recognition data together with sliding window relationship was proposed.
The model concatenated various window features, then used a sequence-learning module to learn
temporal features, and achieved an accuracy of 91.6% on the benchmarking dataset. In Ullah
et al.45 the authors proposed a stacked LSTM network for human activity recognition. The model
achieved an accuracy of 93.13%, but very low accuracy was also recorded on some individual
activities. Nafea et al.46 proposed a deep CNN with many convolutional layers and varying kernel
sizes, and Bi-LSTM. Experiments were performed on the WISDM and UCI-HAR datasets, com-
prising six activities each, and accuracies of 98.53% and 97.05% were recorded, respectively. Even
though the model was bulky and achieved high overall recognition accuracy, results showed that
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the model recorded low precision and accuracy when classifying walking downstairs, walking,
and walking upstairs on the two datasets.

The performance evaluation of LSTM against Bi-LSTM for activity recognition using wearable
sensor data was done in Reference 41, and the result showed that the Bi-LSTM achieves more
recognition accuracy. However, the issue of low precision and recall of some individual activities,
which is often caused by such activity’s complex pattern, was not addressed. Recent researchers
have proposed an attention mechanism to improve activity classification in wearable sensor-based
activity recognition to tackle this issue.

The attention mechanism works in parallel and can perceive the entire chain of events. The
attention mechanism’s fundamental notion is to assign varying weights to different types of infor-
mation. As a result, giving relevant data a more significant weight draws the deep learning model’s
attention to it.19 The formal notion of attention mechanism is that weights are learned over k
vectors, each of dimension d, using a collection of linear layers and non-linearities. The dimen-
sion of these d-dimensional vectors is mapped to a one-dimensional score in most architectures,
and these scores are then passed through the Softmax function to yield the set of k weights.
Recent activity recognition research has adopted an attention mechanism to improve recognition
accuracy. In Murahari,22 a DeepConvLSTM with attention was proposed to extend the work in
Ordóñez,47 and a relative improvement of 87.5% was recorded on the PAMAP2 dataset using the
model with attention, and an accuracy of 74.8% on the model without attention. Wang et al.48

used a three-CNN architecture that consisted of five one-dimensional (1D) convolutional layers
and three max-pooling layers. Following the convolution procedure, three attention submodules
were employed to give high weights to significant features and low weights to irrelevant features
in order to maximize SoftMax classification capabilities. On the UCI HAR dataset and a weakly
labeled dataset, the model achieved a recognition accuracy of 93.83%, with low precision and
recall in walking and going downwards. Gao et al.18 proposed an attention mechanism for HAR
using CNN and Recurrent Neural Network. The model used channel and temporal attention to
increase feature learning and classification performance of wearable sensors. The model was eval-
uated on five datasets, and the result showed an increased performance when compared to base-
line models and was able to achieve a recognition accuracy of 92.45% and 93.16% on the PAMAP2
dataset using CNN with attention and residual network with attention, respectively. Although the
model achieved a high recognition accuracy on the datasets; however, unlike our proposed model,
three full architectures were connected to achieve this performance, which made the model size
bulky and complex compared to our model. And also, after 500 epochs, the precision achieved on
some activities with complex patterns, such as vacuum cleaning (80%), was relatively low.

Also, in Abdel-Basset,49 a dual-channel model was proposed. The model comprised LSTM lay-
ers with attention and convolutional layers with a SE block. The model was tested on two publicly
available datasets in UCI-HAR and WISDM. Experiments showed that the model achieved 97.70%
and 98.90% recognition accuracy on the UCI-HAR and WISDM datasets. The result showed that
walking upstairs and downstairs had the lowest precision and recall. Unlike our present study,
three (3) SE blocks were stacked with CNN and LSTM, making the model size bulky. Also, the
model was trained for 250 epochs. Also, in Liu et al.50 the researchers combined bidirectional
long short-term memory (BiLSTM) with an attention mechanism for human activity recogni-
tion. The result showed that the model outperformed existing models. However, some activities
achieved low individual recall and precision. In summary, the limitations of the presented related
works can be summarized as follows; CNN models have limitations in learning discriminative
features, since they treat all features as equally important. Also, such deep neural networks often
come with increased computational cost. RNN and hybrid models have limitations in terms of
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computational time, thereby limiting their edge inference applicability. Also, existing models with
attention mechanisms often come with high model complexity, due to the number of features that
are passed to the fully connected layers.

To tackle this, our proposed model connected 1D convolutional layer to fully connected SE
block. Similar to the work in Gao et al.18 where temporal and channel-wise attention was used
together with 2D convolutions with same kernel size and batch normalization in three con-
catenated architectures, our proposed model used channel-wise attention with standalone 1D
convolutional layers architecture with varying kernel sizes, batch normalization, max-pooling lay-
ers, and best-fit SE reduction ratio. By leveraging on the best-fit SE reduction ratio, the parameters
of the fully-connected layers were reduced, which helped the model increase the responsive-
ness to the essential features with a smaller model size, and increased the recognition accuracy,
precision, and recall of some individual activities with complex patterns.

3 METHODOLOGY

This section presents the method adopted in the signal segmentation phase, data pre-processing,
the description of the proposed model, and the model parameters. The block diagram of the
overall approach is presented in Figure 1.

3.1 Signal segmentation

In sensor-based activity recognition, the activity signals need to be segmented into a sequence
of windows for classification. In this study, the fixed sliding window is adopted whereby
the signals are segmented into windows of fixed size with a degree of overlap. Let D ={(

x1y1
c
)
,

(
x2y2

c
)
, … ,

(
xN yN

c
)}

denotes the activity dataset, which is the sequence of N windows
with each window is labeled with activity class yc that is performed during the interval where
c = 1, … ,C. Let xi ∈ Rw×K denotes an i-th window with K sensor channels. The data of the k-th
channel of a sensor is given as follows:

xi
k = [x1, x2, … , xw] (1)

where w is the size of the window segmentation.

3.2 Proposed model

In general, the issue with CNN is that they treat each feature channel equally. To get around
this, we solve the problem by adding a SE block that serves as a channel-wise attention. This
allowed every feature channel to be re-weighted and as a result of this, improved the accuracy
of the features. In our proposed model, we first built a compressed representation for the fea-
tures using 1D convolutional layers with kernel sizes of 5, 7, 9, and 11, batch normalization
layer, and max-pooling layer. Then the features are flattened to reduce the feature maps to a sin-
gle one-dimensional vector, with a 0.5 dropout rate after the flattening operation. In the second
step, the responsiveness of the extracted features is recalibrated according to their relevance in
predicting the activities. This is achieved by adopting the SE block to model the relationship
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F I G U R E 1 Block diagram of the proposed approach

between the feature maps. The SE block consists of a Global Average Pooling layer to perform
global average pooling on each flattened feature map and sum out the spatial features. Then, the
features are reduced using varying reduction ratio and later extended using a 2-layered fully con-
nected network with rectified linear unit (ReLU) activation function in the first and sigmoid in
the next. This produces a feature vector used to scale the feature channels. Figure 2 illustrates an
overview of the proposed model.

3.2.1 Squeeze and excitation block for feature weighting

Given an input window x that is fed to the proposed model to produce feature maps u ∈ RL×D. The
weightage of the feature maps is calculated via several operations. First, global-average pooling is
used to produce channel-wise statistics. The statistic z ∈ RD is generated by squeezing u through
its temporal dimensions L. Then the d-th element of z is given as:

zd = Fsq (ud) =
1
L

L∑

j=1
uj

d (2)
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F I G U R E 2 Overview of the proposed model

where Fsq is given as the squeeze function and L is the length of the feature maps. The aggregated
information acquired using the squeeze operation is then passed to the excitation operation to
capture channel-wise dependencies using a gating mechanism with a sigmoid activation function,
given as Reference 49:

s = Fex(z,W) = 𝜎(g(z,W)) = 𝜎 (W2𝛿 (W1z)) (3)

where 𝜎 is the Sigmoid activation function and 𝛿 is the ReLU activation function. W1 ∈ RD∕r×D,
W2 ∈ RD×D∕r and r is the reduction ratio. s is a vector of size equal to the number of feature maps.
Thus, the values can be interpreted as the weights indicating the importance of the feature maps.
Using s, the feature map X is rescaled as follows:

F(scale) (ud, sd) = sd,ud (4)

where F(scale) (ud, sd) is the channel-wise multiplication of a scalar sd and feature map ud.

3.2.2 Model parameters

As shown in Table 1, the input stage takes in the data input and passes to the one-dimensional
convolutional layer with batch normalization; since research51 has proved that batch normaliza-
tion can minimize the number of training steps necessary for model convergence and to allow
for a higher learning rate without focusing on initialization parameters and dropout rate. As a
result, a batch normalization layer simplifies and speeds up the model’s training. The activation



10 IGE and NOOR

T A B L E 1 Architecture summary of the proposed model

Layer Configuration Output shape

Input 171× 36

1D Conv Kernel size = 5, Activation = ReLU 171× 32

Batch normalization — 171× 32

1D max-pooling Pool size = 2 57× 32

1D Conv Kernel size = 7, Activation = ReLU 57× 64

Batch normalization — 57× 64

1D max-pooling Pool size = 2 19× 64

1D Conv Kernel size = 9, Activation = ReLU 19× 128

Batch normalization — 19× 128

1D max-pooling Pool size = 2 6× 128

1D Conv Kernel size = 11, Activation = ReLU 6× 256

Batch normalization — 6× 256

1D Max-pooling Pool size = 2 2× 256

Flatten — 512

Dropout Rate = 0.5 512

SEBlock (Dense) Ratio, Activation = ReLU 85

SEBlock (Dense) Activation = Sigmoid 512

Multiply — 512

Dense Activation = Softmax 12

layer uses a ReLu activation, and a one-dimensional max-pooling layer is included. Our SE block
consists of two fully connected layers. The first layer has a ReLU activation function and varying
reduction ratio. The second fully connected layer used a sigmoid activation function to compute
probabilities before the multiply layer. The code of the model architecture is available online at
https://github.com/AOige/SEConv1D.

4 EXPERIMENTAL RESULTS

4.1 Datasets

We investigated the most widely used wearable sensor-based datasets in HAR research within
the last 5 years (2017–2021) to evaluate the proposed model. We conducted a thorough search
on various libraries and databases such as Scopus, IEEExplore, Springer, Web of Science, and
ACM, through google scholar using the following Boolean keywords; “Wearable HAR”, “HAR
OR Wearable sensor” “PAMAP2”, “WISDM AND HAR”, “mHealth AND HAR AND dataset”,
“UCI-HAR”, “UniMib-Shar AND Dataset”.

The result showed that the PAMAP2,52 WISDM,53 and UCI HAR54 datasets are the most
used datasets, appearing in 442, 419, and 297 activity recognition research papers respectively

https://github.com/AOige/SEConv1D
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F I G U R E 3 PAMAP2 data distribution

between 2017 and 2021. UniMib-SHAR and mHealth appear 146 and 138 times respectively. For
this reason, the proposed model was benchmarked on these three datasets.

4.1.1 PAMAP2 dataset description

The PAMAP2 dataset,52 has nine participants, who were all required to participate in 12 protocol
activities (including six [6] optional activities). The dataset consists of nine participants’ basic and
complex activities. Basic activities include sitting, standing, running, descending stairs, ascending
stairs, cycling, walking, and Nordic walking, with complex activities such as vacuum cleaning,
computer work, car driving, ironing, folding laundry, house cleaning, playing soccer and rope
jumping. The data sample count before segmentation is shown in Figure 3.

Gyroscopes, accelerometers, magnetometers, heart rate monitors, and temperature measure-
ments were used for data collection. In this work, we considered the protocol activities, and used
36 features of 3 IMUs, with a sliding window size of 5.12 s, sampling rate of 33.3 Hz, and 78%
overlap.

4.1.2 WISDM dataset description

The WISDM dataset53 is an activity recognition dataset gathered from 36 participants who go
about their daily lives. Accelerometer data from three-axis was considered. The dataset consists of
6 activities: Walking, Sitting, Standing, Jogging, Ascending stairs, and Descending stairs. The data
was collected at a 20 Hz sampling rate using a smartphone accelerometer sensor, sliding window
size of 10 s, and 95% overlap. The distribution of sample numbers of each activity is shown in
Table 2.
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T A B L E 2 Samples in WISDM using three-axis accelerometer data

S/N Activity Number of samples

1 Walking 2082

2 Jogging 1626

3 Upstairs 633

4 Downstairs 529

5 Sitting 307

6 Standing 247

T A B L E 3 Samples in UCI-HAR dataset

S/N Activity Number of samples

1 Laying 1944

2 Standing 1906

3 Sitting 1777

4 Walking 1772

5 Walking upstairs 1544

6 Walking downstairs 1406

4.1.3 UCI-HAR dataset description

The UCI-HAR54 dataset was gathered through 30 participants participating in performing exper-
iments. Each participant wore a smartphone around their waist and completed six different tasks
(laying, standing, sitting, walking downstairs, walking upstairs, and walking). The accelerometer
and gyroscope sensor data streams recorded the volunteers’ activities at a sampling rate of 50 Hz.
There are nine features in the raw time-series data (i.e., body acceleration, total acceleration, and
gyroscope signals in all three directions). The data signals were segmented into 2.56 s windows
with a 50% overlap, yielding a total of 10,299 samples. The training dataset consists of the activi-
ties of 21 volunteers, whereas the test dataset consists of the activities of 9 volunteers. There are
7352 samples in the training dataset and 2947 samples in the test set. The distribution of sample
numbers of each activity is shown in Table 3.

4.2 Implementation details

Keras with Python 3 on Google Colab with Tensorflow 2.7.0, 12 GB RAM, and GPU was utilized
to build and train the network model. The filters were set at 32, 64, 128, and 256, with a kernel size
of 5, 7, 9, and 11. 1D convolutional layer with batch normalization and ReLU activation function,
and 1D max-pooling layer were stacked, with the SE block after the Flatten and Dropout layer.
The model aims to reduce the categorical cross-entropy loss. An epoch of 100 was set, and an early
stopping mechanism was used to stop the training once the model stopped improving. During
experiments, ablation studies were done to determine the best fit SE ratio for each dataset, and
the best performance was recorded. The hyper parameters are shown in Table 4.
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T A B L E 4 Hyper parameters of the proposed model

Hyper parameters Details

Optimizer Adam

Epoch 100

Batch size PAMAP2–32, WISDM - 16, UCIHAR – 10

Learning rate Initial learning rate = 1e−4

Minimum learning rate = 1e−7

Patience = 5

Model loss Categorical cross entropy

Early stopping patience = 20

Best-fit SE reduction ratio PAMAP2–6, WISDM – 18 UCI-HAR – 28

Kernel size 5, 7, 9, 11

4.3 Performance metric

Since the performance of the proposed model on each activity is to be evaluated, our performance
metrics were based accuracy, individual precision, recall, and F1-Score. Since the datasets are
imbalanced, and these are given as:

Accuracy = TP + TN
TP + TN + FP + FN

(5)

Precision = TP
TP + FP

(6)

Recall = TP
TP + FN

(7)

F1 − Score = TP
TP + 1

2
(FP + FN)

(8)

where TP – true positive, TN – true negative, FP – false positive, and FN – false negative.
Accuracy is defined as the overall fraction of the activities correctly recognized, Precision is

the ratio of positives predicted correctly to the total number of samples classified as positives,
Recall is the ratio of accurately predicted positives to the actual number of positive samples, and
F1-Score is the harmonic mean of recall and precision.

4.4 PAMAP2 experiments

4.4.1 Baseline on PAMAP2

Using a baseline model of Conv1D without the SEBlock, the model achieved an overall testing
accuracy of 97.16% after training for 62 epochs. The baseline model’s training accuracy and loss
are shown in Figure 4, and the confusion matrix is shown in Table 5.
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F I G U R E 4 Training accuracy and loss of the baseline model on PAMAP2 (A) Accuracy versus epochs of
the baseline model (B) Loss versus epochs plot of the baseline model

T A B L E 5 Confusion matrix on baseline model

Activity A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12

A1 308 1 0 0 0 0 0 2 0 2 0 0

A2 1 288 2 0 0 0 0 0 0 3 0 0

A3 0 1 307 0 0 0 0 0 0 0 1 0

A4 0 0 0 382 0 0 1 0 1 1 0 0

A5 0 0 0 1 157 0 0 0 0 0 0 0

A6 0 0 0 0 1 280 1 0 1 2 0 0

A7 0 0 0 0 0 0 296 0 1 0 0 1

A8 0 0 1 2 1 0 1 171 6 2 0 0

A9 0 0 1 2 0 0 1 4 154 3 0 0

A10 0 3 3 0 0 3 0 2 2 265 8 0

A11 0 0 10 0 0 2 0 0 1 0 403 0

A12 0 0 0 0 0 1 1 0 0 5 1 73

Abbreviations: A1, lying; A2, sitting; A3, standing; A4, walking; A5, running; A6, cycling; A7, Nordic walking; A8, ascending
stairs; A9, descending stairs; A10, vacuum cleaning; A11, ironing; A12, rope jumping.

As shown in the confusion matrix of the baseline model in Table 5, 308 lying activities were
correctly classified, with 1 misclassified as sitting, 2 as ascending stairs and 2 as vacuum cleaning.
288 sitting activities were correctly classified out of 304 samples, with 2 classified as standing, 3 as
vacuum cleaning, and 1 as lying. However, activities such as Ascending stairs, descending stairs,
vacuum cleaning, and rope jumping had high misclassifications.

4.4.2 Proposed model on PAMAP2

By using the proposed model, the model trained for 69 epochs and achieved an overall test-
ing accuracy of 97.76%. The model’s training accuracy and loss are shown in Figure 5, and the
confusion matrix is presented in Table 6.
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F I G U R E 5 Training accuracy and loss of the proposed model on PAMAP2 (A) Accuracy versus epochs of
the proposed model (B) Loss versus epochs plot of the proposed model

T A B L E 6 Confusion matrix of the proposed model on PAMAP2

Activity A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12

A1 316 0 0 0 0 0 0 0 0 4 0 0

A2 6 318 3 1 0 0 0 1 0 1 1 0

A3 0 0 309 0 0 0 0 0 1 0 0 0

A4 0 1 0 385 1 0 2 1 1 0 0 0

A5 0 0 0 0 148 0 1 0 0 0 0 0

A6 0 0 0 0 0 271 0 0 0 3 0 0

A7 0 0 0 0 0 0 303 0 1 0 0 0

A8 0 0 0 3 0 0 1 177 2 2 0 0

A9 0 0 0 1 0 0 0 6 168 6 0 0

A10 1 4 2 0 1 2 0 3 2 272 1 0

A11 0 0 2 0 0 0 0 0 0 2 353 0

A12 0 0 0 0 0 0 0 0 0 1 0 83

Abbreviations: A1, lying; A2, sitting; A3, standing; A4, walking; A5, running; A6, cycling; A7, Nordic walking; A8, ascending
stairs; A9, descending stairs; A10, vacuum cleaning; A11, ironing; A12, rope jumping.

As shown in the confusion matrix of the proposed model in Table 6, 316 lying activities were
correctly classified with 4 misclassified as vacuum cleaning, 309 standing activities were correctly
classified, while 1 was misclassified as descending stairs, 148 running activities were correctly
classified out of the total sample of 149, 271 cycling activities were also correctly classified, with 3
misclassified as vacuum cleaning. 177 descending stairs were correctly classified out of the total
sample of 205, with 3 misclassified as walking, 1 as Nordic walking, 2 as ascending stairs, and 2
as vacuum cleaning. Likewise, 168 ascending stairs activities were correctly classified out of 181
samples, with 1 misclassified as walking, 6 as descending stairs, and 6 as vacuum cleaning. Also,
rope jumping activities had 83 correctly classified out of the total 84 samples, with 1 misclassified
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T A B L E 7 Evaluation comparison of baseline model versus proposed model on PAMAP2

PAMAP2

Baseline model: 97.16% Proposed model: 97.76% Relative improvement

Activity Precision Recall
F1-
Score MS Precision Recall

F1-
Score MC Precision Recall

F1-
Score

A1 1.00 0.98 0.99 5 0.98 0.99 0.98 4 −2% +1% −1%

A2 0.98 0.98 0.98 6 0.98 0.96 0.97 13 0% −2% −1%

A3 0.95 0.99 0.97 2 0.98 1.00 0.99 1 +3% +1% +2%

A4 0.99 0.99 0.99 3 0.99 0.98 0.99 6 0% −1% 0%

A5 0.99 0.99 0.99 1 0.99 0.99 0.99 1 0% 0% 0%

A6 0.98 0.98 0.98 5 0.99 0.99 0.99 3 +1% +1% +1%

A7 0.98 0.99 0.99 2 0.99 1.00 0.99 1 +1% +1% 0%

A8 0.93 0.93 0.94 13 0.94 0.96 0.95 8 +1% +3% +1%

A9 0.93 0.93 0.93 11 0.96 0.93 0.94 13 +3% 0% +1%

A10 0.94 0.93 0.93 21 0.93 0.94 0.94 18 −1% +1% +1%

A11 0.98 0.97 0.97 13 0.99 0.99 0.99 4 +1% +2% +2%

A12 0.99 0.90 0.94 8 1.00 0.99 0.99 1 +1% +9% +5%

Abbreviations: A1, lying; A2, sitting; A3, standing; A4, walking; A5, running; A6, cycling; A7, Nordic walking; A8, ascending
stairs; A9, descending stairs; A10, vacuum cleaning; A11, ironing; A12, rope jumping; MS, misclassified samples.

vacuum cleaning. A more detailed comparison based on test accuracy, individual precision, recall
and the number of misclassified samples are presented in Table 7.

4.4.3 PAMAP2 discussion

As shown in the analysis presented in Table 7, the baseline model achieved an overall test-
ing accuracy of 97.16%. The individual precision on the 12 activities classified showed that 8
activities had high precision ranging from 0.98 to 1.00. The lowest precisions were recorded in
standing (0.95), ascending stairs (0.93), descending stairs (0.93), and vacuum cleaning (0.94).
Likewise, a recall of 0.93, 0.93, 0.93, and 0.90 was recorded on ascending stairs, descending stairs,
vacuum cleaning, and rope jumping. The highest misclassifications were also present in these
activities, ranging between 11 to 21 misclassified samples. The comparison with the proposed
model showed that the overall accuracy of 97.76% achieved on the PAMAP2 dataset outper-
formed the baseline, improved the precision, recall, and F1 score, and reduced the number of
misclassifications in each individual activity. A relative improvement of +3% was achieved in the
precision of the standing and descending stairs activities, and +1% in cycling, Nordic walking,
ascending stairs, ironing, and rope jumping activities. At the same time, there was a negative
precision improvement of −2% and −1% on lying and vacuum cleaning activities. The recall
comparison between the baseline and the proposed model showed that relative improvements
of +1% was achieved on lying, standing, cycling, Nordic walking and vacuum cleaning. +2% on
ironing, +3% on ascending stairs, and +9% on rope jumping. Also, the F1 score improved in
the proposed model compared to the baseline, and the number of misclassified activities was
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T A B L E 8 Performance comparison with existing models on PAMAP2

Model Year Accuracy No. of parameters

Predsim55 2020 92.97% 2.60 M

ResNet+HC56 2022 92.97% 1.37 M

Conv2D Dual Attention18 2021 93.16% 3.51 M

Multibranch CNN-BiLSTM43 2021 94.29% —

CNN-GRU42 2021 95.27% —

Multichannel CNN-GRU57 2022 96.25% —

Residual block with Bi-LSTM41 2022 97.15% 0.185 M

RCNN58 2021 97.37% —

Sub-window CNN59 2021 97.22% 3.701 M

Ensem-HAR60 2022 97.73% —

Proposed model — 97.76% 0.549 M

reduced. This result showed that the proposed model could recognize most of the individual
activities better than the baseline model. A comparison with the existing models is shown
in Table 8.

As shown in Table 8, Predsim, proposed in Teng et al.55 achieved an overall accuracy of 92.97%
on the protocol activities of the PAMAP2 dataset, the multibranch CNN-BiLSTM proposed in
Challa et al.43 achieved an accuracy of 94.29%, and the model on the 12 protocol activities in the
dataset. The precision and recall on ascending stairs, descending stairs, vacuum cleaning, iron-
ing, and rope jumping were between 82% and 93%. Our proposed model achieved higher recall
and precision. Conv2D dual attention proposed in Gao et al.18 achieved an accuracy of 93.16%
with 3.51 M parameters. Residual Block with Bi-LSTM proposed in Li & Wang,41 has a recogni-
tion accuracy of 97.15%, with a parameter of 0.185 M. Even though the model’s parameters are
smaller than ours, the model achieved a recognition accuracy of 97.15% and had a low recall of
0.93 on ascending stairs, 0.90 on standing and 0.94 on running. To the best of our knowledge,
the best overall accuracy recorded on the PAMAP2 dataset was presented in Bhattacharya et al.60

where the authors proposed Ensem-HAR and achieved an accuracy of 97.73%. The accuracy of
97.76% recorded by our proposed model outperformed the state-of-the-art by 0.03 with 0.549 M
parameters.

4.5 Experiments on WISDM dataset

4.5.1 Baseline on WISDM

The baseline model achieved a recognition accuracy of 97.48% on the WISDM dataset, after train-
ing for 29 epochs. The model’s training accuracy and loss are shown in Figure 6. The confusion
matrix is presented in Table 9.

As shown in Table 9, 158 downstairs activities were correctly classified out of the total 173
samples, with 14 misclassified as upstairs, and 1 as standing. 734 jogging activities were correctly
classified, while 1 was misclassified as upstairs and 1 as walking, 113 standing activities were
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F I G U R E 6 Training accuracy and loss of the baseline model on WISDM (A) Accuracy versus epochs of the
baseline model (B) Loss versus epochs plot of the baseline model

T A B L E 9 Confusion matrix of baseline model on WISDM

Activity A1 A2 A3 A4 A5 A6

A1 158 0 0 0 14 1

A2 0 734 0 0 1 1

A3 0 0 113 2 0 1

A4 0 0 0 82 1 0

A5 16 2 1 0 221 1

A6 4 1 0 0 0 843

Abbreviations: A1, downstairs; A2, jogging; A3, sitting; A4, standing; A5, upstairs; A6, walking.

correctly classified, but 2 were misclassified as standing and 1 as walking. A total of 20 upstairs
activities were misclassified, with 14 misclassified as downstairs, 2 as jogging, 1 as sitting and 1
as walking.

4.5.2 Proposed model on WISDM

By using the proposed model, an overall testing accuracy of 98.907% was achieved after training
for 40 epochs. The model’s training and loss vs epoch are shown in Figure 7, and the confusion
matrix is shown in Table 10.

As shown in Table 10, the proposed model correctly classified 187 downstairs activities, then
misclassified 7 as upstairs, 1 as jogging and 1 as walking, 129 sitting activities were also correctly
classified out of the total 130 samples, the whole 103 samples of standing activities were correctly
classified, and 255 upstairs activities were correctly classified, while 6 were misclassified as down-
stairs, 2 as jogging and 1 as sitting. A comparison of the baseline model with the proposed model
on the WISDM dataset is shown in Table 11.
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F I G U R E 7 Training accuracy and loss of the proposed model on WISDM (A) Accuracy versus epochs of
the proposed model (B) Loss versus epochs plot of the proposed model

T A B L E 10 Confusion matrix of the proposed model on WISDM

Activity A1 A2 A3 A4 A5 A6

A1 187 1 0 0 7 1

A2 1 648 0 0 1 0

A3 1 0 129 0 0 0

A4 0 0 0 103 0 0

A5 6 2 1 0 255 0

A6 2 2 0 1 0 851

Abbreviations: A1, downstairs; A2, jogging; A3, sitting; A4, standing; A5, upstairs; A6, walking.

T A B L E 11 Evaluation comparison of baseline model versus proposed model on WISDM dataset

WISDM

Baseline: 97.48% Proposed model: 98.907% Relative improvement

Activity Precision Recall
F1-
Score MS Precision Recall

F1-
Score MS Precision Recall

F1-
Score

A1 0.89 0.91 0.90 15 0.95 0.96 0.96 8 +6% +5% +6%

A2 1.00 1.00 1.00 2 0.99 1.00 1.00 2 −1% 0% 0%

A3 0.99 0.97 0.98 3 0.99 1.00 1.00 0 0% +3% +2%

A4 0.98 0.99 0.98 1 0.99 1.00 1.00 0 +1% +1% +2%

A5 0.93 0.92 0.92 20 0.97 0.97 0.97 8 +4% +5% +5%

A6 1.00 0.99 0.99 5 1.00 0.99 1.00 5 0% 0% +1%

Abbreviations: A1, downstairs; A2, jogging; A3, sitting; A4, standing; A5, upstairs; A6, walking; MS, misclassified samples.
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T A B L E 12 Performance comparison with existing and baseline model on WISDM

Model Year Accuracy (%) No. of parameters

PSDRNN61 2020 93.06 —

LSTM-CNN62 2020 95.75 2.89 M

Multi-head attention63 2020 96.40 2.77 M

Multichannel CNN-GRU57 2022 96.41 —

CNN-GRU42 2021 97.21 —

Attention induced CNN64 2021 98.18 1.0415 M

Ensem-HAR60 2022 98.70

PredSim55 2020 98.82 2.60 M

Attention ResNet18 2021 98.85 2.33 M

ST-Deep HAR49 2021 98.90 —

Proposed model 98.90 1.514 M

4.5.3 WISDM discussion

Experiment on the WISDM dataset showed that the proposed model achieved overall recogni-
tion accuracy of 98.907%. As shown in the analysis presented in Table 11, high precision was
achieved by the baseline model on jogging, sitting, standing and walking, with precisions of
1.00, 0.99, 0.98, and 1.00, respectively. However, low precision was recorded on downstairs (0.89)
and upstairs (0.93). Likewise, the recall of 0.91 and 0.92 recorded on these two activities was
the lowest compared to that of the other activities on the baseline model. However, the pro-
posed model increased the precision of the downstairs activity to 0.95 and the recall to 0.96,
which shows a relative improvement of +5% and +6% in the precision and recall of the down-
stairs activities, respectively. Also, the upstairs activity saw an increase in precision of 0.93 on
the baseline to 0.97 on the proposed model and a recall increment of 0.97 in the proposed
model, compared to the 0.92 achieved on the baseline model. This shows a relative improve-
ment of+4% and+5% in precision and recall respectively on upstairs activities. The other relative
improvement achieved include +1% in the precision of standing activities, +3% on the recall of
sitting, +1% on the recall of standing, and F1 increment of +6%, +2%. +2%, +5%, and +1% on
downstairs, sitting, standing, upstairs and walking, respectively. This result showed that the pro-
posed model outperformed the baseline on the WISDM dataset. A comparison of the proposed
model based on accuracy and number of parameters with some existing models is presented
in Table 12.

As shown in Table 12, the LSTM-CNN model presented in Li et al.62 achieved an accu-
racy of 95.75% with 2.89 M parameters, while the Multi-head attention model proposed in
Zhang et al.63 achieved a recognition accuracy of 96.40% with 2.77 M parameters. The Pred-
sim model proposed in Teng et al.55 achieved an accuracy of 98.82%, with 2.60 M parameters.
To the best of our knowledge, the best recognition accuracy presented on the WISDM dataset
is in Abdel-Basset,49 where the authors proposed ST-Deep HAR, and recorded a recognition
accuracy of 98.90%. The proposed model achieved equal accuracy with the state-of-the-art
with a recognition accuracy of 98.90%, with increased precision and recall on some individual
activities.
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4.6 Experiments on UCI-HAR dataset

4.6.1 Baseline on UCI-HAR

After 39 epochs, the baseline model without the SEBlock achieved a recognition accuracy of
95.07%. The model’s training and model loss are shown in Figure 8, and the confusion matrix is
presented in Table 13.

As shown in Table 13, the baseline model correctly classified 536 walking activities, and mis-
classified 1 as walking downstairs. From the total 491 samples of walking upstairs activities, a total
of 6 were misclassified as walking, 41 as walking downstairs, and 1 as laying. Likewise, 35 walk-
ing downstairs activities were misclassified as walking upstairs. Fewer misclassifications were
recorded in sitting and standing, but a total of 17 laying activities were misclassified as sitting,
and 24 as standing.

4.6.2 Proposed model on UCI-HAR

After 34 epochs, the proposed model achieved an accuracy of 95.89%. The model’s training
accuracy and loss is presented in Figure 9, and the confusion matrix in Table 14.

F I G U R E 8 Training and model loss of baseline model on UCI-HAR. (A) Accuracy versus epochs of the
baseline model (B) Loss versus epochs plot of the baseline model

T A B L E 13 Confusion matrix of the baseline model on UCI-HAR

Activity A1 A2 A3 A4 A5 A6

A1 536 0 1 0 0 0

A2 6 443 41 0 0 1

A3 0 36 496 0 0 0

A4 0 0 0 487 9 0

A5 0 0 0 5 410 5

A6 0 0 0 17 24 430

Abbreviations: A1, walking; A2, walking upstairs; A3, walking downstairs; A4, sitting; A5, standing; A6, laying.
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F I G U R E 9 Training accuracy and loss of the proposed model on UCI-HAR (A) Accuracy versus epochs of
the proposed model (B) Loss versus epochs plot of the proposed model

T A B L E 14 Confusion matrix of the proposed model on UCI-HAR

Activity A1 A2 A3 A4 A5 A6

A1 537 0 0 0 0 0

A2 4 445 40 0 0 2

A3 0 30 502 0 0 0

A4 0 0 0 484 10 2

A5 0 0 0 3 400 17

A6 0 0 0 9 4 458

Abbreviations: A1, walking; A2, walking upstairs; A3, walking downstairs; A4, sitting; A5, standing; A6, laying.

As shown in the confusion matrix of the proposed model on UCI-HAR in Table 14, the total
537 samples of walking activities were correctly classified, while a total of 40 walking upstairs
activities were misclassified as walking downstairs, 4 as walking, and 2 as laying. 30 walking
downstairs activities were misclassified as walking upstairs, 10 sitting activities were misclassified
as standing, and 2 as laying, 17 standing activities were also misclassified as laying, and 3 as sitting,
while 9 laying activities were misclassified as sitting, and 4 as standing. A full comparison on the
performance of the baseline model with the proposed model on the UCI-HAR dataset is shown
in Table 15.

4.6.3 UCI-HAR discussion

As shown in the result of the analysis presented in Table 15, the baseline model achieved an over-
all accuracy of 95.07%, while the proposed model had an overall accuracy of 95.89%. The number
of misclassified activities reduced in the proposed model compared to the baseline. High preci-
sion was recorded on the walking activity by the baseline model, but 0.92 precision was achieved
on walking upstairs and walking downstairs, 0.96 on sitting, 0.93 on standing, and 0.95 on lay-
ing. The proposed model increased these precisions by+2%,+1%,+2%,+4% and+1% on walking
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T A B L E 16 Performance comparison with existing and baseline model on UCI-HAR

Model Year Accuracy Number of parameters

Bi-LSTM65 2020 91.21% —

InnoHAR66 2019 91.70% —

Net-att348 2019 93.83% —

Attention induced multi-head64 2021 95.38% 1.511 M

LSTM-CNN62 2020 95.78% —

CNN-GRU42 2021 96.20% —

Deep CNN-LSTM+ self attention67 2022 93.11% —

Ensem-HAR60 2022 95.05% —

Proposed model 95.89% 1.157 M

upstairs, walking downstairs, sitting, standing and laying, respectively. Likewise, the recall of the
proposed model, when compared to the baseline on the UCI-HAR dataset showed an improve-
ment of +1% on walking, 1% on walking upstairs, and +5% on laying activities. However, the
recall of the proposed model on the standing activity was better than the proposed model, while
no improvements occurred in walking and sitting activities. This result showed that our proposed
model outperformed the baseline model. The performance comparison of our proposed model
with the existing state-of-the-art on UCI-HAR dataset is shown in Table 16.

As shown in Table 16, the proposed model outperformed the Bi-LSTM model proposed in
Li et al.65 by 4.68%, InnoHAR66 by 4.19%, Attention induced multi-head proposed in Khan
and Ahmad64 by 0.51%, and LSTM-CNN proposed in Xia et al.62 by 0.11%. Also, the proposed
model outperformed the Deep CNN-LSTM + self-attention model proposed in Khatun67 and
Ensem-HAR proposed in Bhattacharya et al.60 However, the existing model in Dua et al.42 where
CNN-GRU was proposed achieved a slightly better accuracy than our proposed model, the recall
and precision recorded by our proposed model on some of the activities are quite better, and also,
the proposed model has smaller number of parameters.

4.7 Ablation studies

In order to find the best fit SE reduction ratio, ablation studies were done by increasing the reduc-
tion ratio starting from ratio 2 to ratio 30, and the performance on the PAMAP2 benchmarking
dataset is presented per experiment, based on the accuracy and number of parameters recorded.
Figure 10 shows the plot of reduction ratio against accuracy. The highest accuracy is achieved for
reduction ratio equal to 6 whereby the recorded accuracy is 97.76%.

5 CONCLUSION

In this research, we have proposed a lightweight and efficient predictive model for wearable
sensor-based activity recognition using a 1D convolutional and max-pooling layers with squeeze
and excitation block with best fit varying reduction ratio as a channel-wise attention. The
channel-wise attention layer was able to automatically rescale the weights of features according
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F I G U R E 10 Accuracy based on reduction ratio on PAMAP2

to their relevance. Therefore, addressing the challenging task of achieving high recall and preci-
sion on activities with complex patterns. Experiments on the benchmarking datasets showed that
our model outperformed the baseline and existing models by achieving a recognition accuracy of
97.76%, 98.90%, and 95.89% on PAMAP2, WISDM and UCI-HAR, respectively. This is an improve-
ment of 0.6%, 1.427%, and 0.82% on the performance recorded by the baseline model in this work.
However, high improvement of up to +9% over the baseline model was achieved by the proposed
model in the recall and precision of some activities. These improvements were also achieved with
minimal number of parameters compared to the baseline. By doing this, we have addressed the
limitations of discriminative feature learning in activities with complex patterns. Even though
some existing models achieved higher overall recognition accuracy than our proposed model on
the UCI-HAR dataset, the precision and recall recorded on some activities with inter-class simi-
larities, such as walking, upstairs and downstairs improved compared to the existing models, and
this was also achieved with fewer parameters. Therefore, this research has been able to propose a
smaller model for activity recognition, which can be easily implemented in wireless devices and
capable of achieving state-of-the-art activity recognition. For future work, we plan to validate the
model on large-scale sensor-based transient datasets, which will use adaptive window segmenta-
tion method. Also, other models that adopt self-attention such as transformers will be explored
to investigate how more salient features can be learnt, to improve the performance of activity
recognition models.
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