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A B S T R A C T

Large labeled datasets are crucial for video understanding progress. However, the labeling process is time-
consuming, expensive, and tiresome. To overcome this impediment, various pretexts use the temporal
coherence in videos to learn visual representations in a self-supervised manner. However, these pretexts
(order verification and sequence sorting) struggle when encountering cyclic actions due to the label ambiguity
problem. To overcome these limitations, we present a novel temporal pretext task to address self-supervised
learning of visual representations from unlabeled videos. Repeated Scene Localization (RSL) is a multi-class
classification pretext that involves changing the temporal order of the frames in a video by repeating a scene.
Then, the network is trained to identify the modified video, localize the location of the repeated scene,
and identify the unmodified original videos that do not have repeated scenes. We evaluated the proposed
pretext on two benchmark datasets, UCF-101 and HMDB-51. The experimental results show that the proposed
pretext achieves state-of-the-art results in action recognition and video retrieval tasks. In action recognition,
our S3D model achieves 88.15% and 56.86% on UCF-101 and HMDB-51, respectively. It outperforms the
current state-of-the-art by 1.05% and 3.26%. Our R(2+1)D-Adjacent model achieves 83.52% and 54.50% on
UCF-101 and HMDB-51, respectively. It outperforms the single pretext tasks by 8.7% and 13.9%. In video
retrieval, our R(2+1)D-Offset model outperforms the single pretext tasks by 4.68% and 1.1% Top 1 accuracies
on UCF-101 and HMDB-51, respectively. The source code and the trained models are publicly available at
https://github.com/Hussein-A-Hassan/RSL-Pretext.
1. Introduction

Video understanding requires large, labeled datasets for supervised
training of large-scale video models, which are essential for daily ap-
plications such as autonomous driving, surveillance and security. Many
large datasets are created, such as Moments in Time, Kinetics-600, and
Something-Something. Creating these datasets requires a considerably
long time and effort due to the time-consuming, laborious, and costly
nature of annotation. In addition, millions of unlabeled videos on the
internet can be used to unshackle advances in video understanding.
Therefore, self-supervised learning has significant importance since it
uses the freely available supervisory signals derived from the data to
learn valuable representations. Self-supervised methods can be divided
into contrastive learning methods and pretext methods. Self-supervised
contrastive methods require more computational resources than pretext
tasks, since they rely on contrasting many positive pairs with many
negative pairs in each batch. In addition, some contrastive approaches
require a large batch size to increase the number of negative pairs.
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Others rely on storing a queue of representations from previous batches
to use as negatives.

Several pretexts use temporal coherence, temporal order, in videos
as a supervisory signal. Examples of such pretexts include temporal
order verification, sorting temporally shuffled frames or clips, and
the arrow of time prediction. These order verification and sequence
sorting pretexts struggle to overcome the ambiguity of cyclic actions in
which two different sequence orders of the same video are valid and
possible. Examples of cyclic actions include opening/closing a door [1],
picking up/placing down a coffee cup [2], pull-up [3], and swinging
a child [2]. This ambiguity exists because cyclic actions do not have
unique clips/frames order since both forward and backward playbacks
are correct and valid. Fig. 1 shows an example of a cyclic action,
juggling balls, which has a repetitive, and rhythmic motion since the
balls go up and come down in a continuous loop. Clip A represents
the natural temporal order of the action of juggling balls, while clip B
represents the backward playback temporal order. Clips A and B clearly
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Fig. 1. Cyclic actions ambiguity. Clips A and B are valid and correct, leading to label
ambiguity. The RSL finds an anomaly in the video (the scenes in the red boxes), which
does not depend on the temporal order; therefore, it is not affected by the ambiguity.
(For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

show that both forward and backward temporal orders are correct
and valid, which represents a challenge to the order verification and
sequence sorting pretexts because of the label ambiguity problem.

To overcome these limitations, we propose a novel temporal pretext
unaffected by the cyclic actions ambiguity because it does not depend
on finding unique clips/frames order. Instead, our pretext depends on
finding spatial and temporal change, an anomaly in the video coherence
that is duplicated. Whether the sequence is played using forward or
backward playback does not matter, as represented in clips C and D
in Fig. 1. The key idea of the pretext task is modifying the frames’
temporal order in a video by repeating a scene (represented by the
red boxes in Fig. 1). Then, a neural network is trained to identify
the modified video, localize the location of the repeated scene, and
identify the unmodified original videos that do not have repeated
scenes. We evaluated the proposed pretext task, Repeated Scene Lo-
calization (RSL), on action recognition and video retrieval tasks using
two benchmark datasets, UCF-101 and HMDB-51. The experimental
results show that the proposed RSL pretext achieves state-of-the-art
performance with only RGB modality as input. The contributions of this
research are as follows:

• A novel pretext, Repeated Scene Localization (RSL), is proposed.
Our pretext is unaffected by cyclic actions’ ambiguity and requires
much less memory than self-supervised contrastive methods.

• The RSL pretext is evaluated on two benchmark datasets, UCF-
101 and HMDB-51. It achieves state-of-the-art performance in
action recognition and video retrieval. In addition, ablation ex-
periments are performed, showing its performance under different
settings.

2. Related work

Action Recognition: Action recognition is a dynamic and active
area of research. [4] introduced a method called Temporal Segment
Dropout (TSD) as a form of temporal regularization. TSD prioritizes en-
hancing the temporal representations in a clip of temporal segments by
disregarding the most prominent spatial representations. [5] proposed a
Hybrid Attention-guided ConvNeXt-GRU Network for enhancing action
recognition accuracy. The approach relies on incorporating a multi-
scale hybrid attention module combined with GRU into ConvNeXt to
dynamically adjust channel features and extract both global and local
information from various regions. [6] employed causal inference to in-
tervene on the action to eliminate the domain background’s confound-
ing effect on the class label to achieve video domain generalization. [7]
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presented a novel model design named Convolutional Transformer
Network that combines the advantages of CNNs with the advantages
of the Transformer. The architecture involves the implementation of
a video-to-tokens module that creates tokens from the videos’ spatial–
temporal representations produced by 3D convolutions. [8] introduced
an approach of sequences of transformer encoders to minimize the
computational complexity of the Vision Transformer by utilizing a
relative-position embeddings scheme instead of the absolute-position
embeddings.

Video Retrieval: Recent research [9] introduced a framework for
content-based video retrieval that eliminates frames that are easily
recognized as distractions and estimates the extent to whether the
remaining frames must be eliminated, taking into account saliency
information and subject relevancy. [10] presented a new composed
video retrieval method that employs detailed language descriptions for
explicit encoding query-specific contextual data. The method learns
discriminative embeddings of vision-only, text-only, and vision-text
to improve the alignment and precisely retrieve corresponding target
videos. [11] presented a video retrieval approach, which integrates
attention technique and multimodal fusion using the SlowFast back-
bone. The slow network is responsible for obtaining skeleton motion
representations, while the fast network is responsible for obtaining
static image representations from video sequences. [12] presented a
video-text retrieval approach that utilizes an Adaptive Attribute-Aware
Graph Convolutional Network and a Multi-Modal Masked Transformer.
The approach uses an adaptive correlation matrix in order to ac-
quire distinctive video features for video-text retrieval. They presented
a new loss function to enhance the accuracy of measuring the se-
mantic similarity between video-text pairs during the training. [13]
introduced a dual inter-modal interaction framework called DI-VTR,
enabling video-text retrieval. The framework incorporates a module for
dual inter-modal interaction to achieve precise multilingual alignment
across both the text and video modalities.

Self-supervised Learning: Recently, researchers proposed a con-
trastive learning approach to make the learned features along the tem-
poral dimension more distinct. The approach uses two novel contrastive
losses. One loss discriminates between two distinct non-overlapping
clips sampled from the same video. The second loss discriminates
among the time-steps of the feature map taken from a clip [14]. An-
other method combines clustering and contrastive learning for learning
visual representations. The positives and negatives are constructed
based on the cluster assignments. The positives come from the same
cluster, while the negatives are all other representations from other
clusters [15].

Changing the temporal dimension of the video to get a supervision
signal is a typical pretext design technique. Temporal order verification
is a binary classification task that determines whether three video
frames in a tuple are in the correct temporal order or not using 2D-
CNN [2]. The frames are sampled from high-motion windows that
are identified using optical flow. Sorting video frames is a multi-class
classification pretext for determining the correct temporal order of
randomly shuffled video frames using 2D-CNN [1]. The frames are
sampled based on the motion magnitude, which is calculated using
optical flow. The forward and backward permutations for a video are
considered one class to overcome the ambiguity of cyclic actions. How-
ever, this limits the supervisory signal for non-cyclic actions since there
would be no difference between forward and backward playbacks.
Finding the wrong video subsequence in a tuple of subsequences is a
multi-class classification task that identifies the subsequence that has
incorrect frames’ temporal order using 2D-CNN [16]. Each subsequence
is encoded to a 2D image or stack of differences of frames, which is
not optimal for representing the temporal dynamics in videos and re-
quires preprocessing computations. These methods use computationally
expensive optical flow to find high-motion segments or motion mag-
nitudes for sampling frames. In addition, they use 2D-CNN encoders
that cannot model temporal information. Unlike these approaches, RSL
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is not affected by the ambiguity of cyclic actions, and it does not use
optical flow or rely on 2D-CNN.

[3] proposed future frames order ranking based on a context clip,
which is used to solve the ambiguity of sorting frames/clips without
context. The method samples the context clip and then samples many
target frames from the video segment that follows it. It measures
the ranking scores between each of the target features relative to
the context features. In [3], the pretext ranking objective learns only
temporal content and neglects the spatial content; therefore, they added
a contrastive objective. However, optimizing both objectives makes this
method complex and depends on the size of the negative samples. In
addition, it does not generalize well on the downstream tasks, and
they added an extra auxiliary pretext (rotation prediction). Unlike this
approach, RSL is straightforward and does not rely on using negative
samples or multi-objective optimization.

[17] presented sorting a tuple of shuffled clips as a temporal pre-
text using 3D-CNN. The network has to predict the correct order of
the clips. [18] proposed detecting wrong clips, which have incorrect
frames’ temporal order. The pretext creates wrong clips using prede-
fined temporal permutations, such as random permutation, split and
swap, and play backward. The 3D-CNN has to identify the location of
the wrong clip among many normal clips. [19] proposed predicting
the playback direction as a pretext, which is a binary classification
task, using optical flow as input. [20] proposed predicting the type
of temporal transformation applied to video clips as a pretext, which
is a multitask pretext that identifies the speed of a clip and the type
of temporal transformation applied to it using 3D-CNN. This method
uses four different speeds and four different temporal transformations.
These transformations include speed, random permutation, periodic,
and warp, which uses a random sub-sampling selection of frames. One
transformation relies on the playback direction, which makes it affected
by the ambiguity of cyclic actions.

Although the aforementioned approaches have established being
able to learn visual representations from unlabeled videos, some meth-
ods rely on 2D-CNN, which is not effective in modeling the temporal
dimension of the videos [1,2,16]. Another limitation is using optical
flow as the input modality, which is computationally expensive [19]. In
addition, these temporal pretexts suffer from cyclic actions’ ambiguity
because they rely on the playback direction of the input videos.

Repeating video frames has been used in the literature. [21] pro-
posed a method that repeats an entire clip in the reverse temporal
order, then concatenates the two clips to create one palindrome. [22]
proposed a method that repeats a single frame multiple times to create
a static clip without motion, which is used as an intra-negative clip.
Unlike these methods, RSL uses a scene with motion to create a re-
peated scene in the clip, without repeating the entire clip or reversing
the temporal order of the repeated frames.

The RSL’s objective is twofold. The first objective involves distin-
guishing between unmodified clips and those with repeated scenes,
while the second involves identifying the repeated scene within the
clip. This goal necessitates comparing all the scenes in the temporal
dimension. Unlike the previously proposed pretexts that modify the
temporal order by rearranging and permuting the frames randomly or
in a predefined order, RSL uses the frame repeating to repeat a scene
in the clip, which changes the order of the frames.

3. Repeated scene localization pretext task

Humans possess an inherent capacity to discern whether an action
or a scene from an action has been previously observed and occurred in
the past. The determination of whether a scene occurred is contingent
upon our comprehension of action dynamics and our recollection.
Amazingly, humans notice repeated actions instantly. We hypothesize
that a deep model trained to localize a repeated scene in a video clip
will learn useful representations for downstream tasks. To solve the
RSL pretext, the model must examine and compare the sequence of
3

scenes in the video. Fig. 2 shows the RSL’s dynamic aspect of execution
and the downstream task evaluation from beginning to end. The input
clip generator creates the label for each clip automatically based on
the existence of a repeated scene in the clip and the location of the
scene. For example, an input clip with a repeated scene starting from
the frame at index four will have the label four, while an input clip that
does not have a repeated scene will have the label None.

To create a clip with a repeated scene, we sample fixed-length clips
with forward playback starting at random locations from the original
videos at each epoch, as depicted in Fig. 2 by the activities performed
by the clip sampler. The length of the clips, 𝑙, and the sampling speed, 𝑠,
are determined based on each experiment. Let 𝑛 represent the number
of unique frames in the clip and 𝑟 the number of frames to repeat
(repeated scene length). Let 𝑉 = (𝑓1...𝑓𝑛+𝑟) represent a clip, sampled
at a specific speed, starting at a random frame from an original video.
It has 𝑛+ 𝑟 temporally arranged frames. For example, 𝑛+ 𝑟 could be 16,
𝑛 = 12, and 𝑟 = 4. The procedure for creating a clip with a repeated
scene of length 𝑟 is as follows:

• Select 𝑛 consecutive frames from 𝑉 starting at a random location
to represent the first segment, which contains unique frames, of
the new clip. Fig. 2 illustrates this after the input clip generator
determines to create a modified clip with a repeated scene.

• Select 𝑟 consecutive frames from the first segment to be repeated.
The selection starting index is chosen randomly from a fixed list
of indices representing specific predefined positions. The chosen
index will be used as a label for the generated clip. These frames
represent the second segment of the newly generated clip. Fig. 2
illustrates this by the activities performed by the scene selector.

• Select the insertion index, joining location, based on the experi-
ment settings. Fig. 2 illustrates this by the activities performed by
the insertion index finder.

• Join the two segments to create a clip that has a repeated scene.
Fig. 2 illustrates this by the input clip generator activity after
receiving the insertion index.

The repeated scene location and the insertion location determine
the temporal arrangement of the frames in the new clip, as illustrated
in Fig. 3. For instance, configuration 1 has few temporal changes
because the repeated scene is adjacent to the insertion location, while
configurations 2 and 3 have more temporal changes as the repeated
scene is far away from the insertion location.

An effective pretext should have the right difficulty level to chal-
lenge the network to learn useful representations. If the pretext is
ambiguous, the network cannot solve the task and will not learn the
visual representation. Two parameters determine the RSL’s difficulty.
The first is 𝑟, the number of repeated frames. When 𝑟 is small compared
to the clip length, the task will be more challenging. For example,
repeating two frames in a clip of 32 frames is more challenging to
solve than repeating four frames in a clip of 16 frames. The second
is the insertion location of the replicated scene, which can be either
fixed or random, thereby determining the number of distinct clips that
can be generated from the original clip. When using fixed insertion,
the task will be easier to solve because the number of different possible
generated clips will be small. In contrast, when using random insertion,
the number of possible clips generated will be large. Consequently, the
task will be harder to solve.

Fig. 4 illustrates an example of the RSL pretext. The example uses
𝑙 = 16, 𝑛 = 12, and 𝑟 = 4. For each clip, there are four labels, [0, 4,
8, None], which will be encoded in the implementation as [0, 1, 2, 3],
respectively. First, a clip is sampled from the original video at a random
sampling speed, 𝑠, from a random starting frame. We skip three frames
in this example (𝑠 = 4), and the sampled clip starts at frame ten from the
original video. Then, the clip will be randomly selected to be modified
by repeating a scene or not. If the clip is not modified, then the label

will be None, and the clip will be fed to the 3D-CNN.
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Fig. 2. RSL activity diagram that shows the dynamic aspect of execution RSL pretext and the downstream tasks evaluation.
Fig. 3. Different configurations of repeating a scene.

If the clip is selected to be modified, a frame index is randomly
selected from a predefined selection indices list, where in the example,
the list is [0, 4, 8]. The selected index will be the label of the sampled
clip; in this case, the label is 0 (frame index 0 is selected). This label
means that the repeated scene will start at the first frame of the first
segment created in step 3. Then, the repeated scene is inserted into
the first segment to create a clip with a repeated scene. Finally, the
generated clip is used as input to the 3D-CNN for the self-supervised
RSL training with four labels: [0, 4, 8, None]. The training is performed
by minimizing the cross-entropy loss. The red, green, and gray bars
represent the predicted class probabilities.

4. Experimental results

4.1. Datasets

We used UCF-101 [23] and HMDB-51 [24] datasets for action
recognition and video retrieval downstream tasks, while we used the
training set of UCF-101 split 1 for self-supervised training. UCF-101
has 13,320 diverse and realistic videos of human actions downloaded
from YouTube. HMDB-51 has 6849 videos that cover 51 human actions.
We used the official splits of the datasets and followed the most
common protocol for self-supervised pretext training and downstream
task evaluation on action recognition and video retrieval.
4

4.2. Ablation study

We performed ablation experiments to illustrate the impact of al-
tering the RSL difficulty by varying the number of labels (2, 4, and 8)
through adjustments to the 𝑛 and 𝑟 hyperparameters and to illustrate
the impact of altering the insertion mode.

Self-supervised Pre-training: The default self-supervised pre-
training settings include using the training set of UCF-101 split 1 for the
self-supervised RSL pre-training, without employing any action labels.
We used the official R(2+1)D PyTorch implementation with a clip size
of 16 × 112 × 112. To create the input clips, we resized the clips
to a resolution of 16 × 128 × 171 and, then used a random crop
of 16 × 112 × 112. We sampled the input clips at a random speed
between 1 and 4. We used a batch size of 16 clips, the SGD optimizer,
and a reduce-on-plateau scheduler with patience equal to 20 epochs.
We added two linear layers to the end of the network with a dropout
rate of 0.6. To prevent the models from using shortcuts, we used
spatial inconsistent data augmentations applied gradually during the
pre-training. They include a random-sized crop, a random horizontal
flip, a random gray, a random color jitter, and a random Gaussian blur.
These are our default pre-training settings, any deviations from these
settings are specified throughout the paper.

We followed the aforementioned default settings for all experiments.
In the ablation pre-training, we trained the R(2+1)D models for 244
epochs with an initial learning rate of 1𝑒 − 3, a weight decay of 1𝑒 − 3,
and a momentum of 9𝑒 − 1. Row 2 of Table 1 presents the different
values of the 𝑛 and 𝑟 hyperparameters and the number of labels in
each experiment. We executed three experiments where we inserted
the repeated scene such that there was an offset of frames between it
and its replica. This insertion mode, offset, mimics configuration 2 in
Fig. 3, ensuring a gap between the two scenes.

Downstream Task Evaluation: The default downstream task eval-
uation includes using action recognition and video retrieval to evaluate
the effectiveness of the RSL pretext. We used all three splits of UCF-101
and HMDB-51 for action recognition fine-tuning. We used the self-
supervised RSL pre-trained model as weight initialization by removing
the RSL classification head and attaching a new randomly initialized
classification head on top of the model. Then all the layers are fine-
tuned with cross-entropy loss. We added two linear layers to the top
of the network with a dropout rate of 0.9. We used one cycle learning
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Fig. 4. RSL labels generation. Creating a 16 frames clip with four repeated frames and four possible labels. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)
Table 1
Ablation experiments. The effect of different configurations on RSL pretext.

Exp. R N Label Ins. mode RSL Acc. Top1 Top5 Top10 Top20 Top50 Action Recog.

Rand. – – – – – – – – – – 72.13

1 2 14 8 Offset 65.5 26.9 43.7 53.5 62.2 74 83.76
2 4 12 4 Offset 88.76 27.3 45.7 54.4 63.6 75.4 83.1
3 8 8 2 Offset 95.08 26.2 44.7 54 63.1 75 83.69

4 4 12 4 Random 75.49 25 42.7 52 61.7 73.5 83.66
5 4 12 4 Adjacent 84.69 26.6 43.8 52.7 62.2 74.7 83.74
rate scheduler, a batch size of 16, and the SGD optimizer. For R(2+1)D
models, we resized the clips to a resolution of 16 × 128 × 171 then used
a random crop of 16 × 112 × 112 to create the input clips. We used
a skip rate of three frames (a speed of 4) to sample the input clips, a
random color jittering, a random horizontal flip, and a random crop as
augmentations during training. For testing, we resized the input clips
to 16 × 128 × 171 and used a center crop of 16 × 112 × 112.

In the video retrieval task, we used split 1 of each dataset for the
evaluation. In each dataset, we used the clips in the test set of split 1
to query the clips in the training set of split 1 following [17,25]. We
did not train or fine-tune a video retrieval model following [17,25] by
using the self-supervised pre-trained network, R(2+1)D, as a feature
extractor. To calculate the video-level features, we sampled ten clips
from each video, and their features were extracted using the self-
supervised pre-trained model. Max pooling was applied to the feature
maps of the penultimate layer (prior to the last layer) instead of global
spatiotemporal pooling to extract the features. The clips in the test set
were used to query the training set clips. The cosine distances between
a query clip’s features and all the clips’ features in the training set were
computed. If the label of the test clip was found in the labels of the 𝑘
nearest training clips, then it was regarded as correctly predicted.

During action recognition inference, the video-level prediction was
calculated by averaging the predictions of 10 center-cropped clips sam-
pled uniformly from the video following prior works [17,25]. Features
for the nearest-neighbor retrieval experiments were similarly calculated
by averaging features from uniformly sampled ten center crops fol-
lowing prior works [17,25]. These are our default downstream task
evaluation settings, any deviations from these settings are specified
throughout the paper.

We followed the aforementioned default settings for all ablation
experiments, with the following exceptions: Only the training set of
UCF-101 split 1 is used to fine-tune the models, while the testing set of
UCF-101 split 1 is used to test the action recognition models. We fine-
tuned the models, R(2+1)D, for 360 epochs, with an initial learning
rate of 2𝑒 − 3, a weight decay of 1𝑒 − 3, and a momentum of 9𝑒 − 1.
Only UCF-101 split 1 is used as the validation set in the video retrieval
ablation evaluation. Table 1 shows our pretext performance on the
5

action recognition and video retrieval for these ablation experiments.
Row 2 of Table 1 shows that the RSL difficulty level is controlled
by the 𝑛 and 𝑟 hyperparameters. Experiment 1, which has eight labels,
is the most difficult pretext, with an accuracy of 65.5%. Experiment
2, which has four labels, is less difficult since its accuracy is 88.76%,
while Experiment 3 is the easiest since it is a binary classification with
only two labels with an accuracy of 95.08%. All three experiments
achieve very similar fine-tuning accuracy for action recognition, as the
difference between their scores is less than 1%. All the experiments
show the ability of the RSL pretext to learn excellent and useful
representations used for action recognition. Compared to the randomly
initialized model, the RSL self-supervised models achieve at least a
10% increase in action recognition accuracy. For video retrieval, all
the models achieve comparable scores, yet the scores of Experiment
2 are slightly better than the other two experiments. Based on these
results, the labels are set to four with 𝑛 = 12 and 𝑟 = 4 for all our other
experiments.

We conducted another two ablation experiments. These experiments
show the effects of using different configurations for inserting the
repeated scene. The random insertion mode mimics configuration 3
in Fig. 3, which allows the repeated scene replica to be inserted at
a random location close to or far away from the original scene. In
contrast, the adjacent insertion mode mimics configuration 1 in Fig. 3,
ensuring that the repeated scene replica is inserted at an adjacent loca-
tion to the repeated scene. We used the same previous self-supervised
RSL training procedure and downstream task evaluation procedure in
these two experiments. Row 3 in Table 1 shows the RSL performance on
action recognition and video retrieval for these ablation experiments.

Row 3 in Table 1 shows that the insertion mode affects the RSL
difficulty level. Experiment 4, which uses random insertion, is the most
difficult pretext, with an accuracy of 75.49%. Experiment 5, which uses
adjacent insertion mode, is less difficult since its accuracy is 84.69%,
while Experiment 2, which uses an offset insertion, is the easiest since
its accuracy is 88.76%. All the experiments have very similar fine-
tuning accuracy for action recognition, since the difference between
their accuracies is less than 1%. All the experiments prove the ability of
the RSL pretext to learn useful representations for action recognition.
Compared to the randomly initialized model, the RSL self-supervised

models achieve at least a 10% increase in action recognition accuracy.
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Fig. 5. R(2+1)D-Adjacent model’s attention maps.
For video retrieval, the scores of Experiment 2 are better than the other
two experiments. Fig. 5 shows the attention maps of the top three
predictions for two actions using the R(2+1)D-Adjacent model. Clearly,
our model focuses on the areas and objects related to the action.

4.3. The RSL computational cost and efficiency

Computational Complexity: The core operations of the RSL pre-
text are the selection and insertion operations. The complexity of the
selection operation is constant, selecting an index randomly from a
predefined list of indices. Three modes (offset, random, and adjacent)
are used to execute the insertion operation. The computational com-
plexities of the random and adjacent insertions are constant, selecting
an index randomly from a predefined list of insertion indices. However,
the offset insertion requires that the insertion index be far away by an
appropriate offset of frames from the scene to be repeated. This condi-
tion has to be checked for every insertion index candidate; therefore,
the worst-case computational complexity of the offset insertion is 𝑂(𝑛),
which represents the case of searching all the video frames for a valid
insertion index.

The order verification and sequence sorting pretexts have con-
stant computational complexity since they depend on changing the
clips/frames order based on predefined permutations. However, this
complexity does not apply to the methods that require preprocessing,
such as finding high-motion segments using optical flow [2], finding
motion magnitude [1], or preprocessing the clips to produce other
modalities [16].

Training and Inference Time: Training the R(2+1)D model for 244
epochs to solve the RSL pretext on the full training set of UCF-101 split
1, which has 9537 videos, takes approximately two days on a single
RTX 3080 10 GB GPU, with Intel 10700K CPU. It takes approximately
10.48 min to train the model for one epoch. The inference time on
the full testing set of UCF-101 split 1, which has 3783 videos, takes
approximately 2.38 min.

4.4. RSL pre-training

We used two models, R(2+1)D and S3D, to solve the RSL pretext.
To generate the labels for R(2+1)D and S3D models, we used (0, 4, 8,
None) and (0, 16, 32, None), respectively. We trained three R(2+1)D
models (R(2+1)D-Random, R(2+1)D-Adjacent, R(2+1)D-Offset) using
random, adjacent, and offset insertion modes, respectively. Our default
pre-training settings, as stated in Section 4.2, were followed. We used
four RSL labels, 𝑟 equals four, a learning rate of 1e–3, a weight decay of
1e–3, and a momentum of 9e–1 for all three models. R(2+1)D-Random
and R(2+1)D-Offset were trained for 400 epochs, while R(2+1)D-
Adjacent was trained for 244 epochs. For the S3D model, we followed
our default pre-training settings mentioned in Section 4.2, with the
following exceptions. We used random insertion mode, clips of 64
frames, four RSL labels, 𝑟 equals 16, 200 training epochs, a batch size
6

of 5, a learning rate of 1e–3, a weight decay of 1e–5, and a momentum
of 9e–1. We resized the clips to a resolution of 64 × 256 × 256, then a
random crop of 64 × 224 × 224 was used.

4.5. Action recognition

We followed our default fine-tuning and evaluation settings men-
tioned in Section 4.2 for the action recognition downstream task.
R(2+1)D-Random was fine-tuned on UCF-101 and HMDB-51 using a
learning rate of 1e–2, a weight decay of 1e–3, and a momentum of
9e–1. We fine-tuned R(2+1)D-Random for 477 epochs on UCF-101
three splits, while we fine-tuned it for 541, 496, and 433 on HMDB-51
three splits, respectively. R(2+1)D-Adjacent was fine-tuned on UCF-101
and HMDB-51 using a learning rate of 2e–3, a weight decay of 1e–3,
and a momentum of 9e–1. We fine-tuned R(2+1)D-Adjacent for 431
and 400 epochs on UCF-101 three splits and HMDB-51 three splits,
respectively. For the S3D-Random model, we followed our default fine-
tuning and evaluation settings mentioned in Section 4.2, with the
following exceptions. We used only split 1 of UCF-101 and HMDB-
51 for fine-tuning and testing following [25]. On both UCF-101 and
HMDB-51, we used clips of 64 frames, a sampling rate of 1, a batch
size of 32, a momentum of 0.99, and a reduce-on-plateau scheduler
with patience of 20 epochs. The clip was resized to 64 × 256 × 256,
and a color jittering, a random horizontal flip, and a random crop to
64 × 224 × 224 were used as augmentations during training. We resized
the clip to 64 × 256 × 256, and a center crop of 64 × 224 × 224 was
used for testing. The S3D-Random model was fine-tuned for 201 and
200 epochs on UCF-101 and HMDB-51, respectively. We used a learning
rate of 1e–3 and a weight decay of 1e–3 on UCF-101, while we used
a learning rate of 4e–3 and a weight decay of 4e–5 on HMDB-51. The
weight decay and the learning rate decreased gradually during training.

For the R(2+1)D network, we report the average Top 1 classification
accuracy over the three splits of UCF-101 and HMDB-51. For the S3D
network, we report the Top 1 classification accuracy of split 1 only
of UCF-101 and HMDB-51 following [25]. In order to make a fair
comparison, we compare our work with the self-supervised approaches
that use a single pretext trained on UCF-101 using the RGB modality
only. Optimizing and adding other losses, such as multitask pretext
and contrastive loss, could boost the accuracy. However, it will require
much more computational resources and training time than our pro-
posed pretext. It is noteworthy that an entirely fair comparison between
all the methods in the literature is difficult because these methods
use different networks, sampling rates, resolution, clip length, and
video level evaluation procedures. For example, various techniques are
used to calculate the video level prediction, such as using ten center-
cropped clips sampled uniformly, ten crops with ten clips each sampled
uniformly, or all the center-cropped clips in the video. For reference,
we list the performance of those more complex multitask contrastive
pretexts in Table 2. Fig. 6 shows the attention maps of the top three
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Table 2
Action recognition. All networks are self-supervised pre-trained on UCF-101 Split 1 training set using the RGB modality only.

Method Network Resolution Frames UCF HMDB

Single pretexts

Video Order [18] 3D-AlexNet – 8 49.2 –
Shuffle and Learn [2] CaffeNet 227 × 227 – 50.2 18.1
Skip-Clip [3] 3D ResNet-18 112 × 112 16 59.5 –
OPN [1] VGG 80 × 80 – 59.8 23.8
DPC [26] 3D-ResNet18 128 × 128 25 60.6 –
VCP [27] C3D 112 × 112 16 68.5 32.5
MemDPC [28] ResNet18+RNN 128 × 128 40 69.2 –
VCOP [17] R(2 + 1)D 112 × 112 16 72.4 30.9
VTDL [29] C3D 112 × 112 16 73.2 40.6
Pace [25] R(2 + 1)D 112 × 112 16 73.9 33.8
PSP [30] R(2 + 1)D 112 × 112 16 74.82 36.82

RSL (Ours) - R(2 + 1)D-Random 112 × 112 16 80.68 52.09
RSL (Ours) - R(2 + 1)D-Adjacent 112 × 112 16 83.52 54.50
RSL (Ours) - S3D-Random 224 × 224 64 88.15 56.86

Multitask pretexts - Contrastive

Skip-Clip-Aux [3] 3D ResNet-18 112 × 112 16 64.4 –
PRP [31] R(2 + 1)D 112 × 112 16 72.1 35.0
Pace-Contrastive [25] R(2 + 1)D 112 × 112 16 75.9 35.9
V3S [32] R(2 + 1)D 112 × 112 16 79.1 38.7
Temporal Trans. [20] R(2 + 1)D 112 × 112 16 81.6 46.4
Vi2CLR [15] S3D 128 × 128 32 82.8 52.9
TCLR [14] R(2 + 1)D 112 × 112 16 82.8 53.6
TCLR [14] R3D-18 112 × 112 16 83.9 53.5
V3S [32] S3D-G 224 × 224 64 85.4 53.2
Pace-Contrastive [25] S3D-G 224 × 224 64 87.1 52.6
Fig. 6. R(2+1)D-Random model’s attention maps.
predictions for two actions using the R(2+1)D-Random model. Clearly,
our model focuses on the areas and objects related to the action.

Our proposed pretext achieves state-of-the-art performance com-
pared to the previously proposed single pretexts. It outperforms all
the other methods by a large margin, 83.52% compared to 74.82%
on UCF-101 and 54.50% compared to 40.6% on HMDB-51 for the
R(2+1)D-Adjacent network. Our method is higher by 8.7% and 13.9%,
respectively.

When we compare our R(2+1)D-Adjacent network with the more
advanced multitask contrastive self-supervised approaches, our method
outperforms the R(2+1)D model proposed by TCLR [14] by 0.72%
and 0.9% on UCF-101 and HMDB-51, respectively. In addition, our
model outperforms the R3D-18 model proposed by TCLR [14] by
1% on HMDB-51 and achieves comparable performance on UCF-101.
Our RSL pretext achieves outstanding performance compared to these
methods, which use much more complex multi-loss functions requiring
higher computational cost and training than our pretext. Our R(2+1)D-
Adjacent model achieves higher accuracy than our R(2+1)D-Random
model, even though they both achieve comparable results in the ab-
lation experiments. One reason could be that the fine-tuning hyperpa-
rameters used in the R(2+1)D-Adjacent fine-tuning training are more
suitable than those used in R(2+1)D-Random training.
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Our S3D-Random model achieves state-of-the-art accuracy, 88.15%
and 56.86% on UCF-101 and HMDB-51 compared to the multitask
contrastive pretext proposed by [25]. The accuracy of our S3D-Random
model is higher than [25] by 1.05% and 4.26% on UCF-101 and
HMDB-51, respectively. Our S3D-Random model outperforms the TCLR
R(2+1)D model [14] by 3.26% on HMDB-51. Fig. 7 shows the attention
maps of the top three predictions for two actions using the S3D-Random
model. Clearly, our model focuses on the areas and objects related to
the action.

4.6. Video retrieval

We followed our default video retrieval evaluation procedure men-
tioned in Section 4.2. We report the retrieval scores for two mod-
els, R(2+1)D-Offset and R(2+1)D-Random. Table 3 shows our pretext
performance on the video retrieval task.

Our pretext achieves state-of-the-art when compared to the single
pretexts, top row in the table, even though some pretexts used different
backbones such as (2+3D)-ResNet18 in [28] and R3D in [30]. For UCF-
101, our pretext (R(2+1)D-Random model) is higher by 4.7%, 5.3%,
3.7%, and 0.6% than the single pretexts for Top 1%, Top 5%, Top
10%, and Top 20% respectively. Our pretext is less than [30] by only
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Fig. 7. S3D-Random model’s attention maps.
Table 3
RSL video retrieval performance on UCF-101/HMDB-51.

Method Top1% Top5% Top10% Top20% Top50%

VCOP [17] 10.7/5.7 25.9/19.5 35.4/30.7 47.3/45.8 63.9/67.0
VCP [27] 19.9/6.7 33.7/21.3 42.0/32.7 50.5/49.2 64.4/73.3
MemDPC [28] 20.2/7.7 40.4/25.7 52.4/40.6 64.7/57.7 –/–
PSP [30] (R3D) 24.6/10.3 41.9/26.6 51.3/38.8 62.7/54.6 76.9/76.8

RSL R(2 + 1)D-Rand. 29.3/11.1 47.2/29.9 56.1/43.4 65.3/58.0 76.3/77.7
RSL R(2 + 1)D-Offset 29.28/11.4 47.36/30.9 56.04/43.9 64.55/58.8 76.31/77

Multitask pretexts

PRP [31] 20.3/8.2 34.0/25.3 41.9/36.2 51.7/51.0 64.2/73.0
Temporal Trans. [20] 26.1/– 48.5/– 59.1/– 69.6/– 82.8/–
V3S [32] 23.1/9.6 40.5/24.0 48.7/37.2 58.5/54.3 72.4/77.9
Pace-Contrastive [25] 25.6/12.9 42.7/31.6 51.3/43.2 61.3/58.0 74.0/77.1
Vi2CLR [15] S3D 55.4/24.6 70.9/45.1 78.3/54.9 83.6/67.6 –/–
TCLR [14] 56.9/24.1 72.2/45.8 79.0/58.3 84.6/75.3 –/–
0.6% for the Top 50% accuracy. For HMDB-51, our pretext (R(2+1)D-
Offset model) is higher by 1.1%, 4.3%, 3.3%, 1.1%, and 0.2% than
the single pretexts for Top 1%, Top 5%, Top 10%, Top 20%, and Top
50% respectively. When compared to the contrastive and multitask
methods, our pretext achieved competitive performance compared to
some methods, while the recent methods, Vi2CLR and TCLR, achieved
an impressive performance that outperforms all the pretexts by a large
margin. These methods optimize much complex multi-loss functions.

5. Qualitative analysis

Fig. 8 shows a qualitative analysis of our RSL pretext. We compare
our R(2+1)D-Adjacent model with a randomly initialized R(2+1)D
model on the video retrieval task. In the figure, each video clip is repre-
sented by two frames. For each testing video, the two nearest neighbors
were retrieved from the training set of UCF-101 split 1. Row A shows
the retrieved videos of the randomly initialized R(2+1)D model, while
Row B shows the retrieved videos of our model. Our model focuses on
motion dynamics. For instance, it successfully retrieves two videos of
the BandMarching class. These videos are visually different, yet their
motion dynamics are similar.

6. Limitations

Our pretext uses an unlabeled clip sampled from a random location
in the original video. In addition, it uses fixed positions for selecting
a scene to be repeated. There is no guarantee that the sampled clip or
the selected scene contain high-motion information, which is crucial for
learning actions. Sampling a clip or selecting a scene that has a high-
motion signal could increase the quality of the representations. Other
than the costly optical flow, one modality that contains noisy motion
signals is motion vectors, which are already available through video
codecs such as MPEG-4 and H.264. Using motion vectors to sample
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a clip or select a scene with high motion could increase our pretext
performance. In addition, video frame differences is another modality
that could be used as input. Using frame differences could encode
some motion aspects of the video. Moreover, exploring untrimmed
videos or larger datasets like Kinetics can be an intriguing endeavor.
In addition, our RSL pretext, like several other pretexts, achieves lower
video retrieval accuracies when compared with contrastive approaches.
The reason could be that the pretexts indirectly encourage the model
to learn visual representations via a proxy task. In contrast, contrastive
methods explicitly and directly try to group or cluster the repre-
sentations of similar videos together in the representation space via
contrastive losses.

7. Conclusions

We presented a novel self-supervised pretext used to learn visual
representations from unlabeled videos. Our RSL pretext is straight-
forward, unaffected by the ambiguity of cyclic actions, efficient in
training, and does not require a large memory or computational re-
sources. In action recognition, our S3D model achieves 88.15% and
56.86% on UCF-101 and HMDB-51, respectively. These scores are
higher than the state-of-the-art by 1.05% and 3.26%. In addition,
our R(2+1)D model achieves 83.52% and 54.50% on UCF-101 and
HMDB-51, respectively. These scores are 8.7% and 13.9% higher than
the accuracies of single pretexts. In addition, we achieve 4.68% and
1.1% gain in the Top 1 video retrieval accuracies on UCF-101 and
HMDB-51, respectively. Our ablation experiments show that the RSL
pretext is very effective in learning visual representations under dif-
ferent difficulty levels. Our findings prove that the utilization of these
representations has the potential to enhance the accuracy of action
recognition and video retrieval tasks. However, our pretext samples an
unlabeled clip and selects a scene to be repeated without considering
the high-motion regions in the video, which could enrich the visual
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Fig. 8. RSL video retrieval. Our R(2+1)D focuses on the actions motion dynamics.
representations further. In future work, our proposed pretext could
be improved by detecting the high-motion segments in the video and
using them to sample a clip and generate repeated scenes. In addition,
we would like to explore the possibility of using the learned visual
representations in other video understanding tasks, such as action
detection and action localization.
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