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A B S T R A C T

Temporal Contrastive Learning for Video Representation (TCLR) is the first contrastive framework that uses
temporal losses to enforce the temporal distinctiveness of the features explicitly. However, its local–local
temporal contrastive loss contrasts non-overlapping dense adjacent clips that cover small motion dynamics
due to temporal coherence in videos. These adjacent local clips could represent the same action phase,
and that makes the local–local loss enforce temporal distinctiveness of the features within the same action
phase, whereas much better distinctiveness comes from contrasting different action phases. To overcome these
limitations, Sparse TCLR framework (STCLR) is proposed, which uses random sparse sampling to sample local
clips that cover different motion dynamics of the video. Using sparse local clips with the local–local loss
overcomes the need for the second TCLR temporal loss, the global–local loss. In addition, a novel temporal
pretext (Same Speed Localization) is proposed for intra/inter action temporal self-supervised learning and
combined with the temporal loss. We prove that TCLR can be simplified to a framework that uses two losses
only instead of three. STCLR achieves better feature transferability by a significant margin than TCLR on video
retrieval. STCLR outperforms TCLR by 0.58%, 1.21%, 0.88%, and 0.98% and by 4.32%, 5.97%, 6.51%, and
2.78% on Top 1, Top 5, Top 10, and Top 20 retrieval measures on UCF-101 and HMDB-51, respectively. On
action recognition, STCLR outperforms TCLR on Diving-48 by 9.68%, which is a significant improvement, and
on HMDB-51 by 0.83%, while it achieves a lower accuracy by 0.72% on UCF-101.
1. Introduction

Creating and labeling extremely large video datasets is indispens-
able for video understanding progress and development [1]. However,
the manual labeling process is extremely time-consuming, expensive,
and tedious [2]. In addition, labeling videos is much more challeng-
ing than labeling images due to the temporal dimension of video
data [1]. To overcome these limitations, self-supervised learning re-
lies on using the structure and the internal properties of the data to
learn useful representations from the data directly without any human
annotations or supervision [3]. Fig. 1 shows the overall process of self-
supervised learning, which has two consecutive phases: self-supervised
pre-training and downstream task evaluation.

First, the intrinsic co-occurrence patterns, relationships, attributes,
and structural elements of the unlabeled data are utilized to identify
or create the self-supervision signal (e.g., temporal coherence). Then,
the pretext task is defined and structured utilizing the self-supervision
signal to automatically label the unlabeled data. An example of a pre-
text is temporal order verification [4], where the model is pre-trained
to classify whether an input clip has the correct order of frames or not.
Unlabeled video clips are sampled based on the pretext requirements
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and used along with the produced labels to train the model for solving
the pretext task.

Next, the acquired representations are transferred to the target task
using transfer learning, which includes fine-tuning, linear probing, or
employing the self-supervised pre-trained model as a feature extrac-
tor. The labeled dataset is utilized in this phase for the supervised
training/evaluation of the target task, and its performance is used to
assess the efficacy of the pretext and the learned visual representa-
tions. Self-supervised techniques are categorized into four categories
of pretext tasks: context-based, generative, contrastive, and contrastive
generative [3,5]. Using self-supervised learning on the vast and massive
volume of freely unlabeled videos from the internet has great potential
to advance video understanding [1].

Various video properties and characteristics have been used in de-
signing context-based pretexts. For example, video speed is employed in
many pretexts, such as determining whether a video is being played at
normal speed or at an accelerated speed [6], sorting shuffled clips based
on their speed [7], and speed prediction and video generation [8].
Other pretexts rely on the temporal coherence of videos as a super-
vision signal; such pretexts include repeated scene localization [9],
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 data mining, AI training, and similar technologies. 
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Fig. 1. The overall process of self-supervised learning.

classifying videos temporal transformations [10], tracking large video
frame regions and forming fine-grained pixel-level correlations between
successive video frames [11], and optimizing for temporal cycle con-
sistency, in which video sequences representing the same action are
temporally aligned [12].

Several pretexts rely on the pixels’ values as a supervision signal;
such pretexts include video frame reconstruction using a reference
frame [13,14], using the preceding frame [15], or using a reference
frame with keypoints [16]. In addition, future latent representations
are used as a supervision signal in [17,18]. Numerous non-video based
pretexts have been proposed, such as aligning the temporal information
with the structural information of a temporal graph [19]. The temporal
information is represented by the temporal conditional intensity, which
is modeled using the historical neighbor sequences. The structural in-
formation is represented by the structural conditional intensity, which
is modeled at two different scales, local and global. The features from
the high-order neighbor sequences are aggregated to create the local
structural intensity, while all the graph nodes are utilized to create
a global representation. In addition, many self-supervised methods
combine context-based pretexts with another self-supervised approach,
contrastive learning [20–22].

Contrastive learning uses contrastive losses to learn useful data
representations. The primary goal is learning a general feature function.
The function’s role is to map the input data to representations located
in a hypersphere feature space [2]. Contrastive methods strive to learn
features that are invariant to dissimilar data views of the same data
sample. To achieve this, contrastive methods try to make the positive
pairs close to each other while making the negative pairs far away from
each other in the representation space. In addition, contrastive learning
uses heavy data augmentations and the convolutional neural networks’
abstraction capability to learn some aspects of the semantic structures
of the input data [2].

Videos have rich temporal multimodal information used in a variety
of tasks that are not limited to video understanding. For instance, [23]
used the temporal information in videos for acoustic event classifica-
tion, where a temporal multi-modal graph represents an acoustic event.
The graph nodes represent audio segments or video segments related
to the event. The temporal relationships that exist naturally among
the nodes are employed as timestamps on their edges. The temporal
dimension in videos plays an important role in video understanding
tasks since it contains much richer information when compared with
2 
Fig. 2. Long jump has two distinct stages, running and jumping that are represented
by red and cyan, respectively. Yellow, orange, green, blue, and pink boxes represent
local clips. A. Contrasting running with jumping generates two-stage representations.
B. TCLR generates suboptimal representations that partially model the two stages. C.
STCLR contrasts various motion dynamics leading to much more distinct two-stage
representations compared to TCLR.

static images; however, the weight of that role varies. In action recog-
nition, there are actions that require motion modeling to be classified;
pushups and juggling balls are examples. In contrast, some actions
are static and can be classified without using motion; walking with
a dog and playing paintball are examples [24]. The motion in videos
varies through time for actions that have multiple action stages, such as
long jump as illustrated in Fig. 2, which consists of two distinct action
phases, running and jumping [1]. In addition, the motion signal or the
spatiotemporal context in videos changes very slowly and smoothly
through time due to the high redundancy between consecutive video
frames [13,25–28].

The Temporal Contrastive Learning for Video Representation Frame-
work (TCLR) is a contrastive framework that uses two temporal con-
trastive losses, local–local loss and global–local loss, combined with
the standard instance contrastive loss to explicitly influence the video
representations to be temporally distinct [1]. However, the local–local
loss contrasts dense, non-overlapping neighboring clips extracted from
the video, as illustrated in part B of Fig. 2 by the yellow, orange,
green, and blue boxes. This sampling process is not optimal for learning
temporally distinct features because of two reasons: First, the clips are
densely sampled, so they cover little motion due to the high redundancy
in the consecutive video frames. Second, the clips are next to one
another, neighboring clips, so there is a high possibility that they
represent the same action stage (running in Fig. 2). In this case, the
TCLR local–local loss considers clips from one action stage as negatives
to one another. An optimal loss would choose clips from different action
stages to be contrasted, as illustrated in part C of Fig. 2.

To overcome these limitations, we propose an improved TCLR
framework called the Sparse TCLR (STCLR) framework. STCLR employs
random sparse sampling to select local clips that represent a variety
of motion dynamics, as illustrated in part C of Fig. 2 by the yellow,
orange, green, blue, and pink boxes. STCLR implements two design
choices to modify the TCLR local clips’ sampling procedure. The first is
sampling the local clips at random locations from the video instance
to increase the probability of covering different action stages. The
second is varying the sampling rate to increase the temporal extent
of the covered motion and increase the temporal diversity of the local
clips. Our method creates very different local clips, and they cannot be
combined to create the global clip used by the TCLR global–local loss
due to their random temporal locations and their different sampling
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rates. Even if there is a way to combine them to form the global
clip, it would have temporally incoherent motion due to the abrupt
spatiotemporal change between its frames. Modeling this global clip
with the 3D-CNN would not be ideal because CNNs rely on the strong
local correlations property of the input to work well and extract useful
features. For this reason, we propose to neglect the use of the global–
local temporal contrastive loss and only use the local–local temporal
contrastive loss. In addition, we propose to combine the contrastive
objective with a novel temporal pretext related to the speed of videos
to enrich the video representations. The contributions of this research
are as follows:

• We prove that the TCLR framework can be simplified to a frame-
work that uses only two losses instead of three losses by changing
its input clips and its sampling method.

• A novel framework, Sparse TCLR, that combines the Simplified
TCLR with a novel temporal pretext is proposed. The STCLR relies
on random sparse sampling and video speed modeling to achieve
temporal distinctiveness of the features explicitly.

• Existing temporal pretexts only learn from a single video instance
and ignore other videos of the same action or different actions.
Therefore, a novel temporal pretext, Same Speed Localization
(SSL), is proposed for intra/inter action temporal self-supervised
learning.

• The Simplified TCLR, STCLR, and the SSL pretext are evalu-
ated using three benchmark datasets: Diving-48, UCF-101, and
HMDB-51. They achieve an outstanding performance in action
recognition and video retrieval.

2. Related work

Sparse sampling has been used successfully to capture essential
motion dynamics from videos. [26] demonstrated that sparse tempo-
ral sampling is an effective technique for modeling the long-range
emporal structure of videos, which is crucial for motion dynamics
nderstanding. In this approach, sparse temporal sampling was used
o generate video-level representation by extracting a sequence of
hort snippets that were sampled sparsely and distributed uniformly
ver the temporal dimension of the long video. [28] confirmed that
inking meaningful transformations of entities or objects in videos
ver time can be achieved using sparse temporal sampling. Using
nly sparsely and uniformly sampled frames, their approach can learn
ffectively from and reason about the long-term temporal dependencies

and relations between the frames of the video.
In [29], various sized 3D space–time tubes were sparsely sampled

from the full video to create learnable tokens used for jointly learning
ideo and image representations by a vision transformer. [30] proposed

a method where sparse frames were uniformly sampled from either one
or a few sparsely sampled short video clips. These clips were extracted
from the original long video during each training step to facilitate cost-
effective video and language tasks end-to-end learning. [30] found that
parse sampling enhances the generalization of the model and is often
ore accurate when compared to dense sampling of offline features of

long videos.
[31] proposed a video-language model where each raw video was

epicted by only two comprehensive video clips, each consisting of a
ew frames that span the entire video. The video was divided into a few
egments, and then a single video frame was randomly sampled from
ach segment to create a comprehensive clip. [32,33] have examined

video masked autoencoders for pre-training and represented videos as
tubes and investigated the sparseness in terms of masking. They have
found similar results, indicating that sparseness is advantageous.

We utilize random sparse temporal sampling to extract various
ideo segments that represent various temporal dynamics of the same
ideo, which are then contrasted to one another to promote tempo-

ral distinctiveness learning. However, our sparse temporal sampling
 I

3 
technique differs from [26,28,30] because our method samples sparse
D clips at various sampling rates from various locations; as a result,
hese clips could overlap, whereas [26,28,30] sampled sparse frames

uniformly. In addition, our method does not rely on using sparse tubes
of different shapes as used in [29], or dividing the video into segments
nd sampling only two comprehensive clips as in [31], or representing
ideos as tubes as used in [32,33].

The most related pretexts in the literature are those that rely on the
ideo speed, such as predicting if the given clip is sampled at normal

speed or accelerated [6], speed classification and sorting the clips based
on their speed [7], speed prediction and video generation [8], speed
prediction and other temporal and spatial relations predictions [34],
pace prediction and contrastive learning [21], recognizing temporal
ransformations [10], speed and direction and overlap/order classi-

fication in the auxiliary objective in [20]. These pretexts learn the
emporal dynamics from video clips that represent one single action.
his limits the learning ability of the network since it solves the pretexts
y comparing clips sampled from a single action instance only without
aking into consideration other instances from the same action or
nstances from different actions.

Video speed modeling is a very effective technique for
self-supervised visual representation learning. [10] demonstrated that

odeling the speed of videos yields visual representations that accu-
ately capture long-range temporal motion statistics. These statistics

require long-range reasoning and observation in the video temporal
dimension. The model learns the important temporal aspects of video
representation by discriminating and focusing on the temporal vari-
ation in videos while the spatial content has almost been preserved.
Modeling the dynamics’ subtleties of these motions entails more than
motion estimation between two or three frames. Furthermore, these
subtleties are exclusive to the moving entities and objects, requiring
object detection and recognition. It is difficult to determine accurately
the speed of an action, since different types of actions naturally have
varying motion speeds. For example, the speed of applying make-up is
very different from the speed of biking. Completing this task usually
requires more profound comprehension of the physics and objects
depicted in the video [10].

The most similar approach to our pretext is the contrastive objective
of [20]. It applied the same relative transformations to two different ex-
amples and used the vectors that encode these relative transformations
as positives. The approach in [20] differs from our pretext because it
explicitly encouraged the feature vectors of the relative transformations
of these different examples to be closely represented in the feature
space by using contrastive loss. Our pretext relies on the network’s
ability to find spatially and temporally different clips that have the
same speed using cross-entropy loss. The network has to learn the inter-
class differences and dynamics for these different actions. In addition,
the equivariance contrastive objective in [20] is practically difficult to
optimize alone, and they needed three additional auxiliary pretexts to
facilitate the learning process.

Contrastive video representation learning has been in the spotlight
of the computer vision research community following the success of
contrastive learning in the image domain [1]. In contrastive learning,
choosing the positives and the negatives plays a vital role in controlling
the representations’ quality and making the representations temporally
distinct or temporally invariant.

Positive clips could be sampled from the same video as the anchor,
yet at different temporal locations, while negatives could be sampled
from other different videos [35–37]. The speed in videos can also
e used to create the positives and the negatives [38,39]. In [39],

the positive pair was sampled from the same video, yet one clip was
short and the other was long. The short clip covers a short temporal
imestamp due to its small sampling frame rate, while the long clip
overs a much larger temporal extent due to its large sampling frame
ate. Short and long negatives were extracted from different videos.

40], different views of a video frame were regarded as positives,
n [
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and all the other views of a random frame sampled from random other
videos were regarded as negatives. Unlike our proposed framework
hat enforces temporal distinctness using explicit temporal loss, these
pproaches focus on learning temporally invariant representations by
sing distant clips sampled from the same video as positives.

Another research has focused on mining inter-video positives,
whereby the positives were sampled from other videos than the anchor
to potentially group semantically similar videos together. RGB view and
optical flow view were used to mine positive clips that are semantically
similar to the anchor [41,42]. In [43], a contrastive probabilistic
framework was proposed where the positives and the negatives were
mined using the proposed probabilistic distance, which was used to
group more semantically similar clips. In [44], a clustering method was
sed to create positive and negative clips. For a given video, the clips

that were mined randomly from the same cluster as the video were
considered positives, while negative clips were sampled from different
clusters. Unlike these works, our instance contrastive loss uses two
ugmented clips sampled from the same video as positives, while the
egatives are sampled from other videos. In addition, our temporal loss
s used to achieve temporal distinctness of the video representation.

The temporal dimension of videos was employed to generate hard
egatives that were used with a contrastive objective to learn useful
epresentations. In [22,45], an intra-video negative clip was extracted
rom a different timestamp of the same video as the anchor. In [46],

frame repeating and frame shuffling along the temporal dimension
were used to generate intra-video negative clips from the anchor. Even
though these approaches used hard negatives to ease the invariance
constraint, they did not explicitly contrast the timestamps of the same
video to represent the temporally distant clips of the video by distinct
features. In addition, we do not rely on the triplet loss or use frame
shuffling, frame repeating, or any other auxiliary modalities.

Iterative clustering was used in [47] to generate videos’ pseudo-
labels that were used to mine inter-video positives. Hard negatives

ere also mined using the pseudo-labels. Two triplet margin losses
ere used, instance-based triplet loss and temporal discrimination loss.
he temporal discrimination triplet loss, similar to the TCLR local–local

oss, uses a non-overlapping intra-video negative clip or a negative
lip sampled from other videos in the same cluster as the anchor.
nlike [47], our approach contrasts five intra-video clips, sampled at

andom temporal locations with different speeds, using the InfoNCE
contrastive loss. In addition, we do not use clustering or any auxiliary

odality, such as optical flow, which was used in [47].
The video’s multi-modal nature was used with contrastive objectives

to learn video representations. For instance, text and RGB clips were
used in [48,49]. Audio and the visual modality were used to drive the
learning process in [50,51]. In addition, RGB videos, audio, and text

ere used in [52].
A recent research [53] highlighted that multimodal contrastive

learning is limited by its reliance on the presumption that represen-
tation learning can only be achieved using the information shared
between modalities and that this information is sufficient for the target
tasks. [53] proved that this presumption is not accurate because infor-
mation can exist solely within a single modality yet remain pertinent to
he target task. [53] designed a new method capable of capturing both
hared and distinct information. This method factorizes the information
hat is pertinent to the target task into shared representation and unique
epresentation. Then, it acquires target task pertinent information us-
ng mutual information lower bounds maximization. Furthermore, it
emoves unrelated information using mutual information upper bounds
inimization. In addition, it relies on multimodal data augmentations

or achieving target task relevance.
Different from contrastive learning factorization, [54] proposed

using multimodal redundancy reduction to discriminate between inter-
modal and intra-modal embeddings. This approach decouples the
shared and distinct (modality-unique) representations across modal-
ities for multimodal self-supervised learning. The dimensions of the
4 
feature embedding were divided into two parts, cross-modal shared
and modality-distinct. The normalized cross-correlation matrix of the
shared dimensions and the distinct dimensions between two modalities

as computed during training. Next, the shared dimensions matrix was
ptimized toward the identity, while the distinct dimensions matrix
as optimized toward zero. Consequently, shared embeddings aligned
ver modalities, whereas modality-specific embeddings were repelled.
o prevent collapse, intra-modal learning was optimized where the full
imensions of the embedding were employed. The cross-correlation
atrix, which was computed between two augmented views created

rom the same modality, was optimized toward the identity. Unlike
hese methods, we use the RGB visual modality only as the input to
ur framework without using any other auxiliary signal.

In [55], an unsupervised domain complementary adaptation ap-
proach was developed where domain mutual/domain
structure-oriented contrastive learning was utilized. It leverages the
diversity among sources and the discriminability of each one of them.
Several domain branch networks were employed for learning various
views of domain-invariant discriminative representations from each
source. In addition, the domain-invariant representations coming from
all domain branch networks were employed for training an ensemble
classification network. This makes the domain branch networks provide
diverse knowledge. [55] formulated a domain mutual contrastive loss
that compels the domain branch networks to differ from each other

hile maintaining consistency with the ensemble classification network
to acquire different domain-invariant features. Furthermore, a domain
structure-oriented contrastive loss was presented to enhance the dis-
riminability of domain branch networks by learning the intrinsic
iscriminative neighborhood structure across each target and source
omain. Unlike this method, we use contrastive learning to explicitly
ontrast the timestamps of the same video to model various temporally
istant clips of the video by distinct features.

The TCLR framework uses three contrastive losses [1], temporal
local–local loss and global–local loss, to achieve the temporal distinct-
ness of the representations and the standard instance contrastive loss.
The local–local loss operates on non-overlapping neighboring clips,
which are extracted from different timestamps from the same video in-
stance. This loss guarantees that these clips are represented by distinct
features. Positives are generated from each clip by applying random
augmentations to the clip, while all the other non-overlapping clips
and their augmentations are considered negatives. The global–local
oss operates on the clip’s feature map timesteps. This loss encourages
he feature map’s timesteps that are extracted from a global clip to

be represented as close as possible to their temporally corresponding
local clips’ representations. The global clip is sampled from the video
instance with a skip rate equal to 4 times the local clips’ skip rate. The
global clip covers the entire temporal segment of all the local clips. It
is worth noting that these local clips are the same clips used in the
local–local loss. In the TCLR framework, there is one global clip and
there are four local clips.

However, the TCLR local clips’ sampling technique is not optimal for
achieving temporal distinctness because of the following reasons: First,
the spatiotemporal change and motion that are covered by these local
lips are very short since these clips are densely sampled. Second, one
ction stage could be represented by these clips, and that would make
he objective of the local–local loss is creating different representations
or the same action stage. In addition, dense consecutive local clips will
e very similar to one another even when the video has one action
tage. That is because videos are temporally coherent in nature, which
eans that the signal in videos changes smoothly and slowly in time.

3. Sparse TCLR

Our proposed framework has three losses, two contrastive losses,
and one pretext cross-entropy loss, denoted by 𝐿𝑃 𝑟𝑒𝑡𝑒𝑥𝑡. The contrastive
losses are based on the TCLR framework, where one loss is an instance
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contrastive loss, denoted by 𝐿𝐼 𝐶 , that enforces the representations of
the clips sampled from the same video instance to be close to one
another in the feature space and far away from representations of
other videos. The second contrastive loss is the temporal sparse local–
local contrastive loss, denoted by 𝐿𝑆 𝐿𝐿, that is used to learn distinct
representations for clips sampled from the same video instance. This
loss uses a clip and its augmented version as positives, while all other
local clips and their augmented versions (sampled from the same video
at different random timestamps) are regarded as negatives. Eq. (1)
hows the STCLR loss.

𝑆 𝑇 𝐶 𝐿𝑅 𝐿𝑜𝑠𝑠 = 𝐿𝑃 𝑟𝑒𝑡𝑒𝑥𝑡 + 𝐿𝐼 𝐶 + 𝐿𝑆 𝐿𝐿 (1)

3.1. Instance contrastive loss

Our instance contrastive loss is based on the InfoNCE contrastive
oss. This loss has an objective similar to the TCLR instance contrastive
oss [1]. Two clips are sampled randomly from random timestamps of

the same video using different sampling rates. The starting frame of
each clip is selected at random such that these clips could be overlapped
yet their speeds are different, so they cover different action extents.
These clips are considered positives and contrasted with all other clips
sampled from other videos (negatives) in the mini-batch. In addition,
a positive pair could be created using each one of the two clips paired
with its own augmented version. The mini-batch is sampled at random
and contains different videos. Let the number of videos in the mini-
batch be 𝑁𝐵 , then the total number of clips in the mini-batch will be
2𝑁𝐵 . Typical random spatial and geometric transformations are applied
to these clips. Then, 3D-CNN is used as a video encoder to process the
augmented clips and produce the clip’s features. After that, a non-linear
multi-layer perceptron projection head is used to project the features
into the feature space. For each video 𝑖 in the mini-batch, there will
be two clip features (𝐺𝑖, 𝐺′

𝑖 ). Eq. (2) represents the instance contrastive
loss definition.

𝐿𝑖
𝐼 𝐶 = − log ℎ(𝐺𝑖, 𝐺′

𝑖 )
∑𝑁𝐵

𝑗=1

[

1[𝑗≠𝑖]ℎ(𝐺𝑖, 𝐺𝑗 ) + ℎ(𝐺𝑖, 𝐺′
𝑗 )
] (2)

where ℎ(𝑢, 𝑣) = exp(𝑢𝑇 𝑣∕(‖𝑢‖‖𝑣‖𝛩)) is the similarity function that
calculates the similarity between the two feature vectors, u and v, while
𝛩 is the temperature parameter. In addition, 1[𝑗≠𝑖] ∈ {0, 1} represents
the indicator function that equals 1 if 𝑗 ≠ 𝑖.

3.2. Temporal contrastive loss

To encourage the network to learn the temporal distinctness and
ariation in each video instance, a sparse local–local loss is used. This
oss is the same as the TCLR local–local loss, except it operates on
ive local clips sampled at random temporal locations using different
ampling rates from the same video. Each clip represents a snippet
rom the video instance, and it covers different action extent from the
ther clips. These five clips could overlap with each other. For each
lip, a positive clip is created by applying a random transformation
o the clip. All other local clips and their augmented versions are
onsidered negatives. Formally, let 𝑁𝑠_𝑐 𝑙 𝑖𝑝𝑠 represent five sparse local

clips sampled at random timestamps using different speeds from the
video instance 𝑖. A positive pair at timestamp 𝑝 is created using the
anchor representation 𝐺𝑖,𝑝 and its augmented clip representation 𝐺′

𝑖,𝑝.
All the other sparse local clips and their augmented versions that are
sampled from different timestamps from the same video represent the
negatives. There will be (2𝑁𝑠_𝑐 𝑙 𝑖𝑝𝑠 − 2) negatives for each positive pair.

he sparse local–local loss is defined in Eq. (3):

𝐿𝑖
𝑆 𝐿𝐿 = −

𝑁𝑠_𝑐 𝑙 𝑖𝑝𝑠
∑

𝑝=1
log

ℎ(𝐺𝑖,𝑝, 𝐺′
𝑖,𝑝)

∑𝑁𝑠_𝑐 𝑙 𝑖𝑝𝑠
𝑞=1

[

1[𝑞≠𝑝]ℎ(𝐺𝑖,𝑝, 𝐺𝑖,𝑞) + ℎ(𝐺𝑖,𝑝, 𝐺′
𝑖,𝑞)

] (3)
t

5 
It is worth noting that we do not use other temporal loss, such as the
TCLR global–local loss, since our local clips are sparse and cover non-
adjacent temporal segments that could be hundreds of frames apart.
Fig. 3 shows the sparse local–local loss, where the representations of
the clips are generated from the last layer of a 3D-CNN backbone (Layer
4 of R3D-18). Next, a 3D adaptive average pooling layer is applied to
reduce the size of the representations, which are then projected by the

LP head and used by the contrastive loss.

3.3. The same speed localization pretext

The same speed localization (SSL) pretext mimics the human’s
ability to recognize the speed of multiple actions simultaneously. In
a complex scene where there are multiple actions, humans know the
normal speed of each action instantly, and they can tell if two or

ore actions have the same speed. For example, given three videos for
hree actions, such as playing soccer, biking, and applying eye makeup,
umans know if there are two videos played at a faster speed than their
ormal speed at the same time. The input to the network is a tuple of

clips sampled from different videos with a probability of 𝐶1. Then,
here will be a 1 − 𝐶1 chance that all clips come from the same video
nstance. This probability controls the difficulty level of the pretext,
ince finding the clips that have the same speed is more challenging
hen the clips are sampled from different videos. There are 𝑆 clips that
ave the same speed with a probability of 𝐶2, while there is a chance of
3 = 1 −𝐶2 that all the 𝐾 clips have different speeds. When 𝐾 = 3 and
= 2, this is a four-way classification problem that can be optimized

sing cross-entropy loss. The four free labels are [12, 13, 23, None],
hich represent the location of the clips that have the same speed in

he tuple. In the case of None, it represents the situation where the clips
ave different speeds and no same speed clips are found. Fig. 4 shows
he SSL pretext.

Given a tuple of three clips, 3D-CNN is used as a feature encoder to
extract the feature from each clip in the tuple. The result is a tuple of
features 𝐹 = ⟨𝑓1, 𝑓2, 𝑓3⟩. Then, the features are pairwise concatenated,
⟨𝑓12, 𝑓13, 𝑓23⟩, and transformed using a linear layer, followed by apply-
ing a ReLU function to form a tuple of three vectors. These vectors are
concatenated again and passed to a fully connected layer with softmax
to predict the target class. A cross-entropy loss is used to measure the
prediction quality.

4. Experimental results

4.1. Datasets

Three common benchmark datasets are used in our experiments:
UCF-101 [56], HMDB-51 [57], and Diving-48 (version 1) [58]. Diving-
48 is a challenging dataset because the main distinguishing factor
between different action classes is their long-range motion patterns
rather than their static frame appearance. Therefore, the model must
apture and differentiate these long-term motion patterns to correctly
dentify the classes [20]. Actions in Diving-48 can be defined by a

combination of the takeoff (dive groups), movements performed while
in the air (somersaults and/or twists), and the way the diver enters
the water (dive positions). Two categories that are otherwise identical
might have only subtle differences that are limited to one of the
hree stages. Diving-48 is valuable for assessing the model’s ability to

represent fine-grained details [1]. We follow the protocol used in [1],
where the training set is used for self-supervised pre-training, and then
he model is supervised fine-tuned on the training set, and tested on

the test set.
We use the training set of split 1 of UCF-101 in our self-supervised

pre-training. We do not use any action labels or annotations during
he self-supervised pre-training. In action recognition downstream task
valuation, all three splits of UCF-101 and HMDB-51 datasets are used.
n video retrieval downstream task evaluation, only split 1 of each
ataset is used following the common testing protocol that uses the
est set clips to query the training set clips [1,41,59]. Table 1 shows
he information of each dataset.
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Fig. 3. The sparse local–local temporal contrastive loss, 𝐿𝑆 𝐿𝐿. The video instance on the left represents diving which has three stages (takeoff, flight, entry). The red, dark blue,
green, orange, and blue arrows represent five local clips sampled from the same video at random timestamps using different skip rates. Then for each clip, two versions are created
using random transformations. The representations of those two clips form the positive pair for the loss. All other representations are considered negatives to the anchor clip. 𝑇𝐴...
𝑇𝐸 are random transformations sampled from a universal transformation set 𝑇𝑟.
Fig. 4. The SSL pretext. An example of three clips sampled from three different videos. Clips A and C have the same speed. The correct label is ‘‘13’’ which is encoded as 1 in
the implementation. The clip’s features are extracted using a shared 3D-CNN backbone. The features are concatenated and passed to a linear layer with the ReLU function. Then,
features are concatenated again and passed to a fully connected layer with softmax to produce the class probabilities. A cross-entropy loss is used in this SSL.
4.2. Ablation study

Three ablation experiments are conducted to validate our design
choices. The first experiment tests the proposed pretext, SSL, only
6 
without using the contrastive objectives. The second experiment tests
the Simplified TCLR framework in which only two losses are used, the
instance contrastive loss and the proposed temporal sparse local–local
contrastive loss. The third experiment evaluates the STCLR, which has
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Table 1
Benchmark datasets used to evaluate our methods.

UCF-101 [56] HMDB-51 [57] Diving-48 (V1) [58]

13,320 videos 6849 videos 18K videos

101 classes 51 classes 48 fine-grained
diving classes

YouTube videos Mostly movies, YouTube, Prelinger,
Google videos

Major diving
competitions videos

3 splits, each has train and test set 3 splits, each has train and test set Train set and test
set

Human-object interaction, body-motion
only, human-human interaction, playing
musical instruments, sports

Facial actions w/o object manipulation,
body movements w/o object interaction,
body movements for human interaction

Various types of
diving
l
o
T

l
u

t
h
r
4

three losses, using different levels of sparsity. Every experiment has two
stages: the first is the self-supervised pre-training, while the second is
the supervised downstream task evaluation.

4.2.1. Same speed localization pretext
This experiment confirms that our pretext is indeed capable of

learning useful representations. The quality of the representations is
evaluated on the action recognition downstream task by using the self-
upervised, pre-trained model to initialize the weights of a new model
ackbone. A randomly initialized classification head is added to the

backbone. Then, we fine-tuned all the layers of the new model to solve
he supervised action recognition task.
Self-Supervised Pre-Training: In the SSL pretext self-supervised

re-training, a 3D-ResNet-18 model was used to solve the pretext. The
raining set of split 1 of UCF-101 was used to pre-train the network.

The parameters that control this experiment were set to the following:
𝐾 = 3, 𝑆 = 2, 𝐶1 = 60%, 𝐶2 = 75%, and 𝐶3 = 25%, a max skip rate
of 16 frames, and a dropout rate of 0.5. There are four possible class
labels [12, 13, 23, None] that were encoded as [0, 1, 2, 3], respectively.
Random augmentations were applied during the training that include
random-sized crop, random horizontal flip, random Gaussian blur,
random gray, and random color jitter. These are the default SSL pretext
settings, any deviations from these settings will be specified throughout
the paper.

Each clip has 16 frames with a resolution of 128 × 128. The model
was trained for 499 epochs using the SGD optimizer, a learning rate of
1e–2, a weight decay of 1e–4, a momentum of 0.9, and a batch size
of 24. One cycle scheduler was used during the training to change the
learning rate.

Downstream Task Evaluation: We used action recognition to eval-
ate our proposed pretext by using the self-supervised, pre-trained
odel to initialize the weights of a new model backbone, 3D-ResNet-
8. A randomly initialized two-layer classification head was added to
he backbone. Then, we fine-tuned all the layers of the new model to
olve the supervised action recognition task. We used all the UCF-101
hree splits and reported the average Top1 video level classification
ccuracy. The video level prediction was calculated by averaging the
redictions of ten uniformly spaced clips extracted from the video
nstance following prior works [1,59].

A clip with a resolution of 16 × 128 × 128 was sampled with a skip rate
qual to 4 and used as input to the model. The 3D-ResNet-18 model
as trained for 519 epochs using the SGD optimizer, a learning rate
f 3e–3, a weight decay of 2e–3, a momentum of 0.9, a batch size of
6, and a dropout rate of 0.9. One cycle scheduler was used during
he training to change the learning rate. Standard data augmentations
ere used during training, such as color jittering, random horizontal

lip, and random crop. In Table 2, we compare our action recognition
accuracy with the speed-related pretexts.

Our SSL pretext outperforms all the other speed-related methods
y a large margin except the pretext proposed by [20], which used
 much larger batch size, 192 clips, during the self-supervised pre-

training and used a much more computationally expensive procedure
 r

7 
Table 2
Same speed localization pretext performance on action recognition on UCF-101.

Method Network Input UCF101 Pretraining

Multi-pretexts/Contrastive

Time-Equivariant (Aux.) [20] R3D-18 16 × 128 84.2 UCF-101
VTHCL/Contrastive [38] R3D-50 8 × 224 82.1 Kinetics-400
Temp Trans [10] R(2+1)D 16 × 112 81.6 UCF-101
Pace/Contrastive [21] R(2+1)D 16 × 112 77.1 Kinetics-400
Pace/Contrastive [21] R(2+1)D 16 × 112 75.9 UCF-101
Var. PSP [7] R3D 16 × 112 69.0 UCF-101
ERUV [34] R3D 16 × 112 68.8 Thumos14
PRP [8] R3D 16 × 112 66.5 UCF-101

Single pretexts

SpeedNet [6] S3D-G 64 × 224 81.1 Kinetics
Our pretext R3D-18 16 × 128 82.71 UCF-101

to compute the video level prediction. It is worth noting that our single
objective pretext outperforms the other multi-objective pretexts that
were pre-trained on much larger datasets, such as Kinetics [60].

4.2.2. The simplified TCLR
The Simplified TCLR uses only two losses, the instance contrastive

oss and the proposed sparse local–local temporal contrastive loss, with-
ut using the SSL pretext. This experiment proves that the Simplified
CLR achieves comparable performance or outperforms the original

TCLR on action recognition and video retrieval using UCF-101 and
HMDB-51 datasets. It is worth noting that our proposed approach has
different input distribution since it uses different speeds and different
sampling locations. In addition, our objectives are different from TCLR.
We use two contrastive losses with/without pretext. Thus, the TCLR’s
settings and hyperparameters may not be the best fit for our models.

Self-Supervised Pre-Training: 3D-ResNet-18 model was used as
the encoder to extract the features from the clips. The training set of
split 1 of UCF-101 was used to pre-train the network. The input clips
were 16 frames long, with a resolution of 112 × 112. Following [1], a
multi-layer perceptron with one hidden layer was used as the projection
head. Five clips were sampled from the video and used in the sparse
ocal–local loss. These five clips were sampled from random locations
sing skip rates of 1, 4, 8, 16, and 24, respectively.

The same TCLR random augmentations were applied during the
raining. These augmentations include color jittering, random
orizontal-flip, random cut-out, random grayscale, channel dropping,
andom cropping, and random scaling. The model was trained for
00 epochs using the Adam optimizer, a learning rate of 1e–3, a

temperature of 0.3, a weight decay of 1e–9, and a batch size of 38.
Reduce learning rate scheduler was used with patience of 12 epochs
during the training to decrease the learning rate by a factor of 10
when the loss function stops decreasing. These are the default self-
supervised pre-training settings, any deviations from these settings will
be specified throughout the paper.

Downstream Task Evaluation: To evaluate the quality of the
epresentations of the self-supervised Simplified TCLR model, action
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Table 3
The video retrieval performance of the Simplified TCLR on UCF-101 compared to the
TCLR [1]. Numbers in red or green is 𝑂 𝑢𝑟 𝑠𝑐 𝑜𝑟𝑒−𝑇 ℎ𝑟𝑒𝑒 𝑙 𝑜𝑠𝑠𝑒𝑠 𝑇 𝐶 𝐿𝑅.
Method Losses R@1 R@5 R@10 R@20

TCLR 𝐼 𝐶 + 𝐿𝐿 51.1 67.83 74.57 80.89
TCLR 𝐼 𝐶 + 𝐺 𝐿 47.32 63.10 71.42 78.72
TCLR 𝐼 𝐶 + 𝐿𝐿 + 𝐺 𝐿 56.2 72.2 79.0 85.30

Simplified TCLR 𝐿𝑆 𝐿𝐿 + 𝐿𝐼 𝐶 54.59 73.43 80.02 85.62
(10 clips) (−1.61) (+1.23) (+1.02) (+0.32)

Simplified TCLR 𝐿𝑆 𝐿𝐿 + 𝐿𝐼 𝐶 55.70 73.49 80.02 85.96
(9 clips) (−0.50) (+1.29) (+1.02) (+0.66)

recognition and video retrieval were used as the primary measures
f the features’ quality following [41]. Video retrieval measures the

quality of the representations directly without any additional training
using the nearest-neighbor retrieval task. The clips in the testing set
were used to query the k-nearest neighbor clips from the training set.
Correct video clip retrieval was scored when the top 𝑘 nearest neighbors
of a testing clip contained one video clip of the same class as the testing
clip. Following the common practice, the video-level prediction was
calculated by averaging the predictions of ten clips sampled uniformly
from the video. In addition, we tested the model using nine uniformly
sampled clips for calculating the video-level prediction. A full spatial
crop was used. A skip rate of three frames was used to sample the
clips. The clip features were obtained from the last layer of the model
with spatial pooling applied following [1]. These are the default video
retrieval downstream task evaluation settings, any deviations from
these settings will be specified throughout the paper.

In action recognition, we followed a standard full fine-tuning proce-
ure in which a randomly initialized classification head was connected
o the self-supervised, pre-trained video encoder. Then, we trained all
ayers of the model using cross-entropy loss. We used a classification
ead that has two fully connected layers with a dropout layer in be-

tween. 3D-ResNet-18 network was used to solve the supervised action
recognition task using both UCF-101 and HMDB-51 datasets. Specif-
ically, we used the official three splits of each dataset and reported
the average Top1 video-level classification accuracy. The video-level
prediction was calculated by applying ten crops in the spatial dimen-
sion following [41]. The crops include one center crop and four corners

ith/without horizontal flipping for each video instance. For each
rop, we sampled ten (nine in this experiment only) uniformly spaced
lips extracted from the video instance and averaged their predictions.
he video-level prediction was calculated by averaging the predicted
robabilities for all the sampled crops. The input was a clip with a
esolution of 16 × 112 × 112 that was sampled at a speed equal to 4.

In the fine-tuning experiments, the model was trained for 460
epochs using the SGD optimizer, a learning rate equal to 3e–3, a weight
decay of 6e–3, a momentum of 0.9, a batch size of 16, and a dropout
rate of 0.9. One cycle scheduler was used during the training to change
he learning rate. Standard data augmentations such as color jittering,

random horizontal flip, and random crop were used during the training.
he input clip was resized to a resolution of 128 × 171, and then a
andom crop of 112 × 112 was taken and used as input to the model.
hese are the default action recognition downstream task evaluation
ettings, any deviations from these settings will be specified throughout
he paper. Tables 3 and 4 compare the video retrieval performance of
he Simplified TCLR with the original TCLR, while Table 5 compares

action recognition performance.
Tables 3 and 4 show that the Simplified TCLR achieves comparable

r better performance than the TCLR while using only the instance
ontrastive loss and the sparse local–local temporal contrastive loss.

The Simplified TCLR outperforms the TCLR in seven video retrieval
measures out of eight when using ten clips to calculate the video-
level prediction. It achieves lower accuracy only on the Top 1 retrieval
measure on UCF-101. Interestingly, the Simplified TCLR achieves much
 w
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Table 4
The video retrieval performance of the Simplified TCLR on HMDB-51 compared to the
TCLR [1]. Numbers in red or green is 𝑂 𝑢𝑟 𝑠𝑐 𝑜𝑟𝑒−𝑇 ℎ𝑟𝑒𝑒 𝑙 𝑜𝑠𝑠𝑒𝑠 𝑇 𝐶 𝐿𝑅.
Method Losses R@1 R@5 R@10 R@20

TCLR 𝐼 𝐶 + 𝐿𝐿 19.07 42.42 54.97 69.35
TCLR 𝐼 𝐶 + 𝐺 𝐿 18.43 41.70 53.59 67.19
TCLR 𝐼 𝐶 + 𝐿𝐿 + 𝐺 𝐿 22.8 45.4 57.8 73.10

Simplified TCLR 𝐿𝑆 𝐿𝐿 + 𝐿𝐼 𝐶 23.14 46.27 59.87 73.99
(10 clips) (+0.34) (+0.87) (+2.07) (+0.89)

Simplified TCLR 𝐿𝑆 𝐿𝐿 + 𝐿𝐼 𝐶 22.94 47.12 60.20 74.58
(9 clips) (+0.14) (+1.72) (+2.4) (+1.48)

Table 5
The Simplified TCLR action recognition performance on UCF-101 and HMDB-51. UCF-
101 Split 1 training set is used for the self-supervised pre-training.

Method Architecture Input UCF HMDB

TCLR [1] R3D-18 16 × 112 83.90 53.50
Simplified TCLR (9 Clips) R3D-18 16 × 112 83.32 55.04

better performance by outperforming the TCLR in seven video retrieval
measures out of eight when using nine clips to calculate video-level
rediction. Furthermore, the Top 1 retrieval performance gap on UCF-
01 is decreased to only 0.5, which makes the Simplified TCLR score
omparable to the TCLR score. In addition, our model with two losses
utperforms the TCLR with two losses by a large margin, which proves
hat our sparse local–local loss with our sampling technique is more
ffective than the original TCLR when using two losses. Table 5 shows
hat the Simplified TCLR that uses nine clips to calculate video-level
rediction achieves comparable action recognition accuracy to the
CLR on UCF-101, while it achieves better accuracy on HMDB-51. Our

accuracy is lower than the TCLR by only 0.58% on UCF-101, while the
implified TCLR outperforms the TCLR by 1.54% on HMDB-51. Our
esults on action recognition and video retrieval demonstrate that re-
oving the TCLR’s global–local loss and using only the local–local loss

ombined with random sparse sampling for temporal distinctiveness
odeling performs better than the TCLR in most of the measures.

4.2.3. STCLR using various sparsity levels
This experiment shows the effect of using different sparsity levels to

sample the local clips when pre-training STCLR model. Three different
sparsity levels were used (low, medium, and high). We used skip rates
of (1, 2, 3, 4, 5) for low sparsity, while we used (2, 4, 6, 8, 10) and (4,
8, 12, 16, 20) for medium and high sparsity, respectively.

We employed our default self-supervised pre-training settings men-
tioned in Section 4.2.2 to pre-train the STCLR models. We used an
additional three clips with a resolution of 16 × 112 × 112 to create
he SSL input tuple. The same 3D-ResNet-18 encoder is used to extract
he features from the tuple and to encode the local clips. We followed
he default SSL pre-training settings mentioned in Section 4.2.1. The

models were pre-trained for 300 epochs.
For action recognition, we followed the default fine-tuning settings

entioned in Section 4.2.2 with the following modifications. We report
the classification accuracy for the first split only of UCF-101 and HMDB-
51. In addition, the video-level prediction was calculated by applying
 center crop and averaging the predictions of ten uniformly spaced

clips extracted from the video instance, as in [59]. For video retrieval,
e followed the same video retrieval evaluation procedure mentioned

n Section 4.2.2. Figs. 5 and 6 present the STCLR video retrieval
performance under different levels of sparsity on UCF-101 and HMDB-
51, respectively. Fig. 7 shows the action recognition performance on
UCF-101 and HMDB-51.

Fig. 5 shows that low sparsity STCLR achieved the best retrieval per-
ormance on UCF-101 compared to medium and high sparsity STCLR.
he difference in performance is most obvious for the Top 1 measure,
here increasing the sparsity reduces the Top 1 retrieval performance.
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Fig. 5. Video retrieval on UCF-101 for STCLR with low, medium, and high sparsity.

Fig. 6. Video retrieval on HMDB-51 for STCLR with low, medium, and high sparsity.

For Top 5, Top 10, and Top 20 measures, low sparsity continues
to achieve the best performance, outperforming medium and high
sparsity. In contrast, medium and high STCLR achieved comparable
performance for these retrieval measures. This indicates that increasing
the sparsity beyond low (medium and high) does not affect the Top 5,
Top 10, and Top 20 retrieval measures.

Fig. 6 shows that medium sparsity STCLR achieved the best re-
trieval performance on all the measures on HMDB-51 compared to
low and high sparsity STCLR. Using low and high sparsity reduces
the performance for all the retrieval measures, as STCLR-Low achieved
comparable performance to STCLR-High on Top 1, Top 5, Top 10, and
Top 20.

Fig. 7 shows that changing the sparsity level of the STCLR does
not affect the action recognition performance on UCF-101, since all
three models achieved similar recognition accuracy. For HMDB-51,
high sparsity STCLR achieved the best performance, yet the difference
in performance is not very large; consequently, it can be concluded that
changing the sparsity level does not affect the recognition accuracy.

Notably, although STCLR-Low and STCLR-Medium exhibit varying
retrieval performance on UCF-101 and HMDB-51, both outperform
TCLR in video retrieval across both datasets. Furthermore, our re-
trieval ablation experiments indicate that the optimal sparsity level for
UCF-101 differs from that of HMDB-51, with low sparsity being most
effective for UCF-101 and medium sparsity being optimal for HMDB-
51. The disparate distributions of these datasets may account for the
variation in optimal sparsity.
9 
Fig. 7. Action recognition on UCF-101 and HMDB-51 for STCLR with low, medium,
and high sparsity.

4.2.4. The STCLR computational cost and efficiency
Reading videos from the dataset is the most time-consuming opera-

tion during our self-supervised training. Hence, the quantity of videos
that need to be processed in a single epoch is a key determinant of the
training time for that epoch. Let 𝑁 represent the total number of videos
in the dataset. The TCLR requires reading 𝑁 videos in each training
epoch since it samples the global clip and the local clips from the same
source video. In contrast, the STCLR approach samples the local clips
from a source video and a tuple of 𝐾 clips used in the SSL pretext
from other source videos in each epoch. The 𝐾 clips are sampled from
different videos with a probability of 𝐶1. Our STCLR processes total
videos equal to 𝑁 + (1 −𝐶1)𝑁 + (𝐾 ×𝑁 ×𝐶1) at each epoch. The STCLR
requires reading 2𝑁 videos in each training epoch when all the 𝐾 clips
in a tuple come from the same source video, 𝐶1 equals zero. In this
scenario, the STCLR performs two complete reading operations of the
dataset within a single epoch. One reading operation is dedicated to
local clips’ sampling, while the other reading operation is for SSL tuple
sampling. The worst case is when all the 𝐾 clips in the tuple come
from different source videos, 𝐶1 equals one. In this scenario, the STCLR
performs 𝑁+ (𝐾×𝑁) complete reading operations of the dataset within
a single epoch.

We provide a training time and space complexity comparison be-
tween the original TCLR framework, the Simplified TCLR, and our
proposed STCLR framework. All the experiments were executed on a
server that has an AMD EPYC 7282 16-Core Processor and NVIDIA
A40 GPU. The NVIDIA A40 has 48 GB of memory, while the server
has 62 GB of main memory. We report the training time for one epoch
on the full training set of UCF-101 split 1, which has 9538 videos.

Consistent training conditions were used when executing all the ex-
periments. We followed the self-supervised training settings mentioned
in Section 4.2.2, with the following exceptions. We used a temperature
of 0.1 and patience of 9 epochs for TCLR training and followed the
optimization objectives of the original TCLR [1], optimizing three
contrastive losses. In the STCLR experiments, we used skip rates of 1,
4, 8, 16, and 32, respectively. We used the default SSL pre-training
settings and random augmentations as mentioned in Section 4.2.1.
Three values of 𝐶1 were tested, which include 0, 1, and 0.6. Table 6
shows the training time and space complexity for each model.

The TCLR and the Simplified TCLR have almost the same epoch
training time and GPU memory consumption. This is expected since
both methods process the same number of clips (10 clips) for each
one video instance. The STCLR training time is longer than the TCLR
training time due to the additional overhead of the SSL pretext training,
which is controlled by the value of 𝐶1. The STCLR training time
increases as the 𝐶 increases. In addition, the STCLR requires slightly
1
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Table 6
The training time and space complexity for TCLR, the Simplified TCLR and the STCLR
on the training set of UCF-101 split 1. Epoch time and GPU memory are reported using
minutes and gigabytes, respectively.

Method 𝐶1 Epoch time (Min.) GPU memory

TCLR [1] – 11.33 46.69 GB
Simplified TCLR – 11.06 46.46 GB
STCLR 0 22.03 47.22 GB
STCLR 0.6 34.36 47.22 GB
STCLR 1 43.32 47.22 GB

Table 7
The computational complexity (MegaFLOPs). TCLR uses 𝐵 𝑠 = 40, 𝑑 = 128, 𝑛 = 4, and
en clips per instance, one global and four local clips with their augmented versions.
implified TCLR, and STCLR use 𝐵 𝑠 = 38, 𝑑 = 128, 𝑛 = 5. Simplified TCLR uses ten
lips per instance, while STCLR uses thirteen. 𝑋 = 258.84 GFLOPs.
Method Input IC GL LL SSL Total

TCLR [1] 400𝑋 1.663 0.169 0.664 – 400 X + 2.498
Simplified TCLR 380𝑋 1.501 – 0.986 – 380 X + 2.488
STCLR 494𝑋 1.501 – 0.986 0.0006 494 X + 2.489

more GPU memory, approximately 0.53 GB extra memory, compared
o the TCLR.

To compare the computational complexity of our approaches with
the TCLR, we use the total FLOPs required to process one batch as
a complexity measure. Our approaches and the TCLR use the same
input dimensions (16 × 112 × 112) and the same network architecture
for the backbone encoder (FLOPs of the SSL classification head are
negligible). In addition, the losses do not introduce additional com-
putations to the gradient computations in the shared backbone layers
during the backward pass because the losses operate only at the final
layer. The gradients of the losses are summed up and back-propagated
to the shared layers. Because of these reasons, the total number of
computations for the forward pass, backward pass, and applying the
optimization step for one input clip is equal for all approaches. Let
𝑋 represent the total FLOPs required for encoding one input clip in
the forward pass, computing the gradients in the backward pass, and
applying the optimization step. 𝑋 = 258.84 GFLOPs, which is estimated
using PyTorch profiler tools. Let 𝐵 𝑠, 𝑑, and 𝑛 represent the batch
size, the dimension of the features, and the number of local clips,
respectively.

The FLOPs required to calculate the instance contrastive loss (IC) for
ne batch equals to (8𝐵 𝑠2×𝑑+ 16𝐵 𝑠2− 6𝐵 𝑠). We consider one arithmetic
peration (addition, subtraction, multiplication, division, logarithm,
nd exponentiation) to cost one FLOPs. The FLOPs required to calculate
he local–local (LL) loss for one batch equals to 𝐵 𝑠× (8𝑛2×𝑑+ 16𝑛2− 6𝑛),
hile the global–local (GL) loss requires (4248𝐵 𝑠), and the SSL cross-

entropy loss costs (17𝐵 𝑠). The total FLOPs for one batch equals ((𝐵 𝑠 ×
input clips per one instance) ×𝑋 + 𝐹 𝐿𝑂 𝑃 𝑠𝑓 𝑜𝑟𝐿𝑜𝑠𝑠𝑒𝑠). The IC loss and
the local–local loss have quadratic time complexity, 𝑂((Loss Input)2).
However, the most dominant computational expensive operations are
represented by 𝑋, which is much larger than the losses cost. Table 7
shows the computational complexity (total FLOPs required to process
ne batch) of the TCLR, Simplified TCLR, and STCLR.

Table 7 shows that our methods require less FLOPs for IC loss
calculation than TCLR, which is because we used smaller batch size
than TCLR. In contrast, our local–local loss requires more FLOPs than
TCLR, which is because we used five local clips while TCLR used four.
The total costs for losses calculations are nearly identical for all meth-
ods. However, the most influential factor is the cost for forward and
backward passes which is controlled by the total number of clips the
model needs to process for each batch. The Simplified TCLR requires
20𝑋 less FLOPs than the TCLR, while the STCLR requires 94𝑋 more
FLOPs. The Simplified TCLR achieved better accuracy while saving
5176.8 GFLOPs. It is worth noting that while both the Simplified TCLR
and the TCLR have the same computational cost (FLOPs) when both
10 
use the same batch size, the Simplified TCLR reduces the optimization
objectives, resulting in a streamlined, simpler optimization landscape.
All the methods have a linear time complexity with respect to the
atch size, 𝑂((𝐵 𝑠× input clips per one instance) ×𝑋). When using three
lips per tuple for the SSL pretext, the STCLR has 𝑂(𝐵 𝑠 × 13 ×𝑋) time
omplexity, while the TCLR has 𝑂(𝐵 𝑠 × 10 ×𝑋) time complexity.

4.3. Sparse TCLR

This section presents detailed information regarding the STCLR pre-
raining, action recognition, fine-grained action recognition, and video
etrieval experiments.

4.3.1. Sparse TCLR self-supervised pre-training
The proposed Sparse TCLR framework uses three losses that in-

clude the instance contrastive loss, the proposed sparse local–local
emporal contrastive loss, and the same speed localization pretext loss.

e used our default self-supervised pre-training settings mentioned in
ection 4.2.2 to pre-train the STCLR model. Skip rates of 1, 4, 8, 16,

and 32 were used to sample the five sparse local clips. An additional
three clips with a resolution of 16 × 112 × 112 were sampled to form a
tuple, which was used as input to the SSL classification head. The same
3D-ResNet-18 backbone was used to extract the features from the tuple.

e followed our default SSL settings mentioned in Section 4.2.1.

4.3.2. Action recognition
Action recognition is a common downstream task for assessing the

uality of the self-supervised, pre-trained learned features. We followed
ur default fine-tuning settings mentioned in Section 4.2.2 with the

following modifications. For split 3 of UCF-101, the model was trained
for 490 epochs. For splits 1 and 3 of HMDB-51, we used a learning rate
of 1e–2, a weight decay of 3e–3, and a dropout rate of 0.94. Reduce
on plateau scheduler was used to change the learning rate during the
training. The patience was set to six epochs. For split 2 of HMDB-51, we
used a learning rate of 3e–3, an initial learning rate of 3e–3, a weight
decay of 3e–3, and a dropout rate of 0.90. One cycle scheduler was
used during the training to change the learning rate. The models were
rained for 460 epochs for splits 1 and 3, while we used 390 epochs for

split 2. In Table 8, we compare our scores with the original TCLR and
ith other self-supervised methods that use the same or comparable
xperimental settings and modality as ours.

Since our main objective is enhancing the TCLR, we compare our
odel with the TCLR. Our model outperforms the TCLR on HMDB-51

y 0.83%, while it achieves a lower accuracy by 0.72% on UCF-101.
n addition, the lower part of Table 8 presents methods that cannot be

compared fairly with our model. That is because these self-supervised
ethods [20,44], and [43] used much larger batch sizes, different

resolutions, or different architectures during the self-supervised pre-
training. It can be seen that the batch size during the self-supervised
pre-training plays a vital role in controlling the quality of the rep-
resentations. Such a role is obvious when we look at the model of
roViCo-2 [43], which is an R(2 +1)D model pre-trained with a batch
ize of 48 clips. This model achieves 82.1% accuracy on UCF-101. When

the batch size increased from 48 to 96 in training the ProViCo-3 model,
the accuracy increased by 4%. In addition, ProViCo-4 shows the effect
of increasing the batch size, the depth of the model, and the input
resolution. ProViCo-4, when compared to ProViCo-1, achieves a 10.9%
increment on UCF-101 and an 11.1% on HMDB-51 by increasing the
batch size, the model’s depth, and the resolution of the input.

To understand the reason for the lower accuracy of the STCLR
on UCF-101, we investigated the effect of regularization, which can
lead to a performance gap between the two initialization methods.
We conducted two sets of experiments that followed the same afore-
mentioned UCF-101 action recognition fine-tuning procedure with 490
epochs. In these experiments, we used only the first split of UCF-101

for training and testing. Furthermore, the video-level prediction was



H. Altabrawee and M.H. Mohd Noor Neurocomputing 630 (2025) 129694 
Table 8
STCLR action recognition performance on UCF-101 and HMDB-51. UCF-101 Split 1 training set is used for the self-supervised
pre-training.

Method Arch. Input UCF HMDB

STS [61] R3D-18 16 × 112 67.2 32.7
DPC [17] R3D-18 40 × 128 60.6 –
VCOP [59] R3D-18 16 × 112 64.9 29.5
Pace Pred [21] R3D-18 16 × 112 65.0 –
VCP [62] R3D-18 16 × 112 66.0 31.5
PRP [8] R3D-18 16 × 112 66.5 29.7
Var. PSP [7] R3D-18 16 × 112 69.0 33.7
MemDPC [18] R3D-18 40 × 224 69.2 –
TCP [63] R3D-18 − × 224 64.8 34.7
CSJ [64] R3D-18 16 × 224 70.4 36.0
BFP [65] R3D-18 40 × 128 63.6 –
IIC (RGB) [46] R3D-18 16 × 112 61.6 –
CVRL [35] R3D-18 16 × 112 75.77 44.6
Temp Trans [10] R3D-18 16 × 112 77.3 47.5
TCLR [1] R3D-18 16 × 112 83.9 53.5

Methods use larger batch size, different resolution and/or architectures

V3S [66] R(2+1)D 16 × 112 79.1 38.7
Vi2CLR [44] S3D 32 × 128 82.8 52.9
Time-Equivariant [20] (Aux/batch 192) R3D-18 16 × 128 84.2 59.6
Time-Equivariant [20] (CL+Aux/batch 192) R3D-18 16 × 128 83.7 60.8
ProViCo-1 (batch 96) [43] R3D-18 16 × 112 83.7 57.1
ProViCo-2 (batch 48) [43] R(2+1)D 16 × 112 82.1 –
ProViCo-3 (batch 96) [43] R(2+1)D 16 × 112 86.1 58.0
ProViCo-4 (batch 512) [43] R3D-50 16 × 224 94.6 68.2
Sparse TCLR (Ours) R3D-18 16 × 112 83.18 54.33
Fig. 8. Regularization effect on UCF-101 action recognition for the TCLR and STCLR.

calculated by applying a center crop and averaging the predictions of
ten uniformly spaced clips extracted from the video instance, as in [59].
In addition, we used different values of weight decay in each set of
experiments. One set of experiments used a model downloaded from
the official TCLR GitHub repository as an initialization, while the other
set of experiments used our STCLR model as an initialization. Both the
TCLR model and the STCLR model were pre-trained on the training
set of UCF-101 split 1. Fig. 8 shows the impact of regularization on
fine-tuning action recognition models initialized by the TCLR or the
STCLR.

Fig. 8 shows that the TCLR achieves comparable or better accuracy
than the STCLR, while using less regularization. For instance, the TCLR
model that used a weight decay of 1e–3 achieves comparable accuracy
to the STCLR model that used a weight decay of 4e–3. This shows
that the TCLR uses 0.25% of the regularization used by the STCLR. In
addition, the TCLR model that used a weight decay of 3e–3 achieves
comparable accuracy to the STCLR model that used a weight decay
of 6e–3. This indicates that the TCLR used 0.5% of the regularization
used by the STCLR. This shows that the STCLR initialization slightly
11 
makes the model overfit the dataset, since the STCLR needs more regu-
larization than the TCLR on UCF-101. This behavior is understandable
since different initialization methods can have different impacts on how
quickly the model learns, how well it generalizes, and its ability to
converge to a good solution [67].

In addition, our proposed method, Sparse TCLR, is a general tech-
nique that can be applied and used in combination with any instance
contrastive model to enforce the representations to be distinct along
the temporal dimension explicitly. For example, a potential approach
involves replacing our instance contrastive loss, 𝐿𝐼 𝐶 , with the stochas-
tic contrastive loss proposed by [43], in which positive and negative
pairs are formed according to the probabilistic distance. This method
aims to mine more semantically related positive and negative pairs
by representing the individual clips sampled from a video as normal
distributions and modeling the whole video distribution by combining
them into a Mixture of Gaussians for effective contrastive learning. In
addition, our instance contrastive loss can be replaced by the frame-
work proposed by [44], where clustering is used to create positive and
negative samples. For each example in a specific cluster, positive pairs
are mined randomly from the instances that belong to the same cluster.
Negative samples are extracted from different clusters within the mini-
batch during the training process, which alternates between learning
representation and clustering. An alternative approach that could be
used to replace our instance contrastive loss is a co-training technique
used to enhance the infoNCE loss [41]. When using this technique,
more semantically similar positive and negative pairs can be mined
using the supplementary information obtained from various views of
the data. These views could include RGB and optical flow views, where
one view is used to mine positive class instances for the other view.
Fig. 9 shows the attention maps of the top three predictions for two
actions: haircut and ice dancing, using our action recognition model,
which is fine-tuned on UCF-101.

4.3.3. Fine-grained action recognition
Diving-48 is used to evaluate the STCLR on modeling long-term

temporal dynamics and fine-grained action classification. The STCLR
model was self-supervised pre-trained for 100 epochs on the training set
of Diving-48 using the self-supervised pre-training settings mentioned
in Section 4.3.1. The model was evaluated on the test set of Diving-48
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Fig. 9. The attention maps of the top three predictions for haircut and ice dancing using our action recognition classifier, fine-tuned on UCF-101. Our classifier focuses on the
areas and the objects related to each one of the actions.

Fig. 10. Video retrieval qualitative analysis. Each clip is represented by two frames. For each testing video, the two nearest neighbors are retrieved from the training set of
UCF-101. Row A displays the retrieved videos of the official TCLR model, while row B displays the retrieved videos of our model. Both rows, A and B, use the same query video.
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Fig. 11. Video retrieval of fine grained actions. Each clip is represented by two frames. For each testing video, the two nearest neighbors are retrieved from the training set of
UCF-101. Row A displays the retrieved videos of the official TCLR model, while row B displays the retrieved videos of our model. Both rows, A and B, use the same query video.
Table 9
STCLR action recognition performance on Diving-48 (version 1). Diving-48 training
set is used for the self-supervised pre-training.

Pre-training method Arch. Accuracy

None (Random initialization) [1] R3D-18 13.4
VCOP [1] – 14.7
Instance Contrastive [1] R3D-18 15.8
RESOUND [58] C3D 16.4
TSN [68] BN-Inception 16.8
CVRL [1] – 17.6
MiniKinetics Supervised [68] R3D-18 18.0
MiniKinetics Supervised (Debiased) [68] R3D-18 20.5
TCLR [1] R3D-18 22.9
Time-Equivariant [20] R(2+1)D 34.9
STCLR R3D-18 32.58

using our default fine-tuning settings mentioned in Section 4.2.2. In
Table 9, we compare the STCLR performance with the TCLR and other
self-supervised methods.
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The STCLR achieves an outstanding performance in modeling the
long-term temporal dynamics of the fine-grained actions in Diving-48.
It is evident that the STCLR can capture well the essential tempo-
ral aspects of video representation, such as gradual transitions and
long-term dependencies. The STCLR outperforms the TCLR by 9.68%
classification accuracy, which is an outstanding improvement. In addi-
tion, it achieves an accuracy gain of 19.18% over random initialization,
demonstrating the effectiveness of using sparse local clips to achieve
temporal distinctiveness of the features. The STCLR accuracy is lower
than [20] by only 2.32%, even though [20] used a stronger architecture
and a larger batch size for pre-training, which are known to affect
contrastive learning performance.

4.3.4. Video retrieval
The video retrieval task is used as the main measure of the features’

quality since it is calculated directly using the self-supervised, pre-
trained backbone as a feature extractor without any further training.
We followed the same video retrieval evaluation procedure mentioned
in Section 4.2.2 to measure the Sparse TCLR framework performance.
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Fig. 12. The attention maps of the top three predictions for twelve actions using our action recognition classifier, fine-tuned on UCF-101.
In Tables 10 and 11, we compare our retrieval scores with the original
TCLR and other self-supervised methods.

The STCLR outperforms the TCLR on both UCF-101 and HMDB-51.
Specifically, our method outperforms the TCLR on UCF-101 by 0.58%,
1.21%, 0.88%, and 0.98% on Top 1, Top 5, Top 10, and Top 20 retrieval
measures, respectively. Furthermore, the STCLR achieves outstanding
performance by a large margin on HMDB-51 when it outperforms the
TCLR by 4.32%, 5.97%, 6.51%, and 2.78% on Top 1, Top 5, Top 10,
and Top 20 retrieval measures, respectively. Our Sparse TCLR produces
much better transferable features than the TCLR. In contrast, other
self-supervised methods that use larger batch sizes can achieve better
performance than our method, in the lower part of Tables 10 and 11.
However, our STCLR framework is general and can be combined with
these methods, as explained in Section 4.3.2.

5. Qualitative analysis

Figs. 10 and 11 show a qualitative analysis of our proposed ap-
proach. We compare the video retrieval performance of the STCLR
model with the performance of the official TCLR model, which is
downloaded from the official TCLR GitHub repository. Both models are
pre-trained on UCF-101 dataset. In the figures, each clip is represented
by two video frames. For each video in the testing set, the two nearest
neighbors videos are retrieved from the training set of UCF-101. Row
14 
Table 10
STCLR video retrieval performance on UCF-101. Numbers in red or green is
𝑂 𝑢𝑟 𝑠𝑐 𝑜𝑟𝑒−𝑇 ℎ𝑟𝑒𝑒 𝑙 𝑜𝑠𝑠𝑒𝑠 𝑇 𝐶 𝐿𝑅.

Method R@1 R@5 R@10 R@20

R3D-18 backbone

VCOP [59] 14.1 30.3 40.4 51.1
VCP [62] 18.6 33.6 42.5 53.5
Pace Pred [21] 23.8 38.1 46.4 56.6
Var. PSP [7] 24.6 41.9 51.3 62.7
Temp Trans [10] 26.1 48.5 59.1 69.6
MemDPC [18] 20.2 40.4 52.4 64.7
V3S [66] 28.3 43.7 51.3 60.1
RSPNet [69] 41.1 59.4 68.4 77.8
MFO [70] 39.6 57.6 69.2 78.0
TCLR [1] 56.2 72.2 79.0 85.3

Methods use larger batch size, resolution, or architectures

Time-Equivariant [20]
(Aux - batch 192)

63.6 79.0 84.8 89.9

ProViCo (batch 96)
[43]

63.8 75.1 84.8 89.2

Sparse TCLR 56.78 73.41 79.88 86.28
(+0.58) (+1.21) (+0.88) (+0.98)
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Table 11
STCLR video retrieval performance on HMDB-51. Numbers in red or green is
𝑂 𝑢𝑟 𝑠𝑐 𝑜𝑟𝑒−𝑇 ℎ𝑟𝑒𝑒 𝑙 𝑜𝑠𝑠𝑒𝑠 𝑇 𝐶 𝐿𝑅.

Method R@1 R@5 R@10 R@20

R3D-18 backbone

VCOP [59] 7.6 22.9 34.4 48.8
VCP [62] 7.6 24.4 36.6 53.6
Pace Pred [21] 9.6 26.9 41.1 56.1
Var. PSP [7] 10.3 26.6 38.8 51.6
Temp Trans [10] – – – –
MemDPC [18] 7.7 25.7 40.6 57.7
V3S [66] 10.8 30.6 42.3 56.2
RSPNet [69] – – – –
MFO [70] 18.8 39.2 51.0 63.7
TCLR [1] 22.8 45.4 57.8 73.1

Methods use larger batch size, resolution, or architectures

Time-Equivariant [20]
(Aux - batch 192)

32.2 60.3 71.6 81.5

ProViCo (batch 96)
[43]

35.9 55.2 74.3 81.8

Sparse TCLR 27.12 51.37 64.31 75.88
(+4.32) (+5.97) (+6.51) (+2.78)

A shows the retrieved videos of the official TCLR model, while row
 shows the retrieved videos of the STCLR model. Both rows, A and

B, use the same query video, as depicted in the selected represen-
tative frames. Fig. 10 shows that our model outperforms the TCLR

odel on actions that have multiple phases, such as BalanceBeam.
ur model retrieved two training videos that have the correct label,
alanceBeam, while the TCLR model incorrectly retrieved videos from
ther similar actions, such as StillRings and UnevenBars. In addition,
he TCLR model incorrectly retrieved SkyDiving, ApplyEyeMakeup,
nd CuttingInKitchen videos for CliffDiving, ApplyLipstick, and Baby-
rawling query videos, respectively. Fig. 11 shows the retrieval of
hallenging actions (spatially similar actions), where distinct classes
re mainly characterized and defined by fine-grained, varying motion

patterns. Our model retrieved correct videos, while the TCLR model
incorrectly retrieved BreastStroke instead of FrontCrawl and vice versa.
This proves that our model is better at encoding the subtle motion
dynamics, which are used to differentiate between spatially similar
actions. In addition, Fig. 12 shows the attention maps of the top three
predictions for twelve actions using our action recognition classifier,
which is fine-tuned on UCF-101. Clearly, our model focuses on areas
and objects related to each action.

6. Limitations

Designing a multitask contrastive framework by combining diverse
pretexts with a contrastive objective is a powerful self-supervised tech-
nique. Examples of such frameworks include [20,71]. This design of-
ten produces high-quality learned representations. However, only one
novel pretext, same speed localization, is combined and optimized with
ur contrastive objectives. Adding more diverse pretext tasks could

enhance the performance further. In addition, we used Diving-48, UCF-
101 and HMDB-51 datasets that contain trimmed videos, where each
ideo focuses on an action. Exploring untrimmed videos could be a
hought-provoking endeavor. Similarly, exploring significantly larger
atasets like Kinetics, Moments in Time, or Something-Something is
ntriguing, but it incurs substantial computational costs. In addition, we
sed the RGB modality of videos only for self-supervised representation
earning. It is worth trying to explore using other complementary
ignals, such as audio or optical flow, to discover the impact of these
odalities on the temporal distinctiveness of the features. Lastly, be-

ause our local clips are chosen at random, there is no assurance
hat the sampled local clips contain high-motion information, which is
ssential for learning actions. The quality of the representations could

e improved by sampling clips with a strong motion signal.

15 
7. Conclusions

We proposed the STCLR framework, which is a self-supervised con-
trastive framework that uses a sparse local–local temporal contrastive
loss to enforce the distinctiveness along the temporal dimension of
the representations explicitly. Unlike the TCLR local–local loss, our
temporal loss relies on contrasting different views of the video. These
iews are represented by five local clips sampled from the video at ran-
om locations and different speeds. These clips cover different motion

dynamics of the video. We showed that the temporal distinctiveness
of the representations can be achieved using only two losses instead
of the three TCLR losses. In addition, a novel temporal pretext (SSL) is
roposed that encourages the model to learn inter-class speed dynamics

by comparing clips that represent different actions. Our SSL pretext
outperforms the other speed-related pretexts on action recognition on
UCF-101. By combining the SSL pretext with the sparse local–local
temporal loss, a much better transferability of features is achieved on
the HMDB-51 video retrieval task. The STCLR outperforms the TCLR
on both UCF-101 and HMDB-51 datasets. More precisely, the STCLR
outperforms the TCLR by 0.58%, 1.21%, 0.88%, and 0.98% and by
4.32%, 5.97%, 6.51%, and 2.78% on Top 1, Top 5, Top 10, and Top
20 retrieval measures on UCF-101 and HMDB-51, respectively. The
STCLR demonstrated exceptional performance on HMDB-51 dataset,
surpassing the TCLR by a significant margin. On action recognition,
the STCLR outperforms the TCLR on Diving-48 by 9.68%, which is a
significant accuracy gain, and on HMDB-51 by 0.83%, while it achieves
a lower accuracy by 0.72% on UCF-101.
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