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 A B S T R A C T

Deep learning, a branch of artificial intelligence, is a data-driven method that uses multiple layers of 
interconnected units or neurons to learn intricate patterns and representations directly from raw input data. 
Empowered by this learning capability, it has become a powerful tool for solving complex problems and is 
the core driver of many groundbreaking technologies and innovations. Building a deep learning model is 
challenging due to the algorithm’s complexity and the dynamic nature of real-world problems. Several studies 
have reviewed deep learning concepts and applications. However, the studies mostly focused on the types of 
deep learning models and convolutional neural network architectures, offering limited coverage of the state-
of-the-art deep learning models and their applications in solving complex problems across different domains. 
Therefore, motivated by the limitations, this study aims to comprehensively review the state-of-the-art deep 
learning models in computer vision, natural language processing, time series analysis and pervasive computing, 
and robotics. We highlight the key features of the models and their effectiveness in solving the problems within 
each domain. Furthermore, this study presents the fundamentals of deep learning, various deep learning model 
types and prominent convolutional neural network architectures. Finally, challenges and future directions in 
deep learning research are discussed to offer a broader perspective for future researchers.
1. Introduction

Deep learning has revolutionized many applications across a variety 
of industries and research. The application of deep learning can be 
found in healthcare (Shamshirband et al., 2021), smart manufactur-
ing (Wang et al., 2018), robotics (Pierson and Gashler, 2017) and 
cybersecurity (Dixit and Silakari, 2021), solving challenging and com-
plex problems such as disease diagnosis, anomaly detection, object 
detection and malware attack detection. Deep learning is a subset of 
machine learning that focuses on learning from data using artificial 
neural networks with many layers, known as deep neural networks. 
An artificial neural network is a computational model that imitates the 
working principles of a human brain. The computational models are 
composed of an input layer which receives the input data, multiple 
processing layers that learn the representation of data and the output 
layer which produces the output of the model.

Prior to the reintroduction of deep learning (DL) into the research 
trend, pattern recognition tasks involved a transformation of the raw 
input data such as pixel values of an image into a feature vector that 
represents the internal representation of the data. The feature vector 
can be used by a machine learning model to detect or classify patterns 
in the data. This process requires feature engineering and considerable 
domain knowledge to design a suitable feature representation. With 
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deep learning, this cumbersome process can be performed automati-
cally whereby at each processing layer known as hidden layers, the 
internal representation of the input data is learned or extracted in 
a hierarchical manner. The first layer learns the presence of basic 
primitive features such as edges, dots, and lines. The second layer learns 
patterns or motifs by recognizing the combinations of the edges, dots 
and lines, and the subsequent layers combine the motifs to produce 
more sophisticated features that correspond to the input data. This 
feature learning process takes place in the sequence of hidden layers 
until the prediction is finally produced.

Deep learning has seen numerous breakthroughs in various in-
dustries, transforming how complex problems are solved and how 
businesses operate. For instance, protein folding is a complex process, 
influenced by the intricate sequence of amino acids. Using traditional 
methods to determine how a protein folds would take an immense 
amount of computational power and time due to its complex 3D struc-
ture and vast number of possible configurations. AlphaFold (AlphaFold, 
2025) has made significant progress in this area, using deep learn-
ing to predict protein structures with remarkable accuracy, helping 
researchers to comprehend the complete structure of a key protein 
associated with diseases like malaria and Parkinson’s disease. In natural 
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data mining, AI training, and similar technologies. 

https://www.elsevier.com/locate/engappai
https://www.elsevier.com/locate/engappai
https://orcid.org/0000-0002-3300-3270
https://orcid.org/0000-0001-5155-9304
mailto:halimnoor@usm.my
mailto:ayo.ige@aaua.edu.ng
https://doi.org/10.1016/j.engappai.2025.111225
https://doi.org/10.1016/j.engappai.2025.111225


M.H. Mohd Noor and A.O. Ige Engineering Applications of Artiϧcial Intelligence 159 (2025) 111225 
Table 1
Summary of related works.
 Ref. Focus Concepts not covered  
 Dong et al. (2021) A short review of the fundamentals of DL networks and discusses 

different types of neural networks, DL applications and challenges.
Lack of analysis of CNN architectures and limited coverage of deep 
learning fundamentals.

 

 Talaei Khoei et al. 
(2023)

Discusses the learning approaches (supervised, unsupervised and 
reinforcement learnings), learning strategies, and DL challenges

Lack of fundamentals of deep learning, CNN architectures and DL 
applications.

 

 Alzubaidi et al. (2021) Discusses different types of DL networks, CNN fundamentals and 
architectures, DL challenges and medical imaging applications

Limited discussion on DL applications such as natural language 
processing and time series analysis.

 

 Alom et al. (2019) A short review of the fundamentals of neural networks and 
discusses different types of DL networks, CNN architectures and 
applications.

Limited discussion on DL applications and no discussion of DL 
challenges.

 

 Pouyanfar et al. (2018) Discusses different types of DL networks and DL applications and 
challenges

Lack of analysis of CNN architectures and limited coverage of deep 
learning fundamentals.

 

 Sarker (2021) Discusses different types of DL networks and provides a summary of 
DL applications

Lack of fundamentals of deep learning, analysis of CNN 
architectures and limited discussion on DL applications.

 

language processing, systems like OpenAI GPT, Google Gemini and IBM 
Watsonx have revolutionized chatbots and virtual assistants, enabling 
them to understand and respond to human language with remarkable 
accuracy and contextual awareness. These systems have overcome the 
challenge of processing vast amounts of unstructured text, allowing 
them to engage in more natural conversations and handle a wide 
range of topics. Businesses can use these systems to automate customer 
service, provide real-time support and improve user experience.

Several studies have been conducted to discuss the concept and 
application of deep learning in the last few years, as listed in Ta-
ble  1. The studies addressed or focused on several aspects of deep 
learning, such as types of deep learning models, learning approaches 
and strategies, convolutional neural network (CNN) architectures, deep 
learning applications and challenges. In Dong et al. (2021), the authors 
provided fundamentals of deep learning and highlighted different types 
of deep learning models, such as convolutional neural networks, au-
toencoder and generative adversarial networks. Then, the applications 
of deep learning in various domains are discussed, and some challenges 
associated with deep learning applications are presented. Another sur-
vey (Talaei Khoei et al., 2023) provided a comprehensive analysis of 
supervised, unsupervised and reinforcement learning approaches and 
compared the different learning strategies such as online, federated and 
transfer learning. Finally, the current challenges of deep learning and 
future direction are discussed.

In Alzubaidi et al. (2021), the authors provided a comprehensive 
review of the popular CNN architectures used in computer vision tasks, 
highlighting their key features and advantages. Then, the applications 
of deep learning in medical imaging and the challenges are discussed. 
A similar survey is reported in Alom et al. (2019), where the different 
supervised and unsupervised deep learning models are highlighted, and 
the popular CNN architectures are compared and discussed. In another 
survey (Pouyanfar et al., 2018), the authors focused on the applications 
of deep learning in computer vision, natural language processing and 
speech and audio processing. The different types of deep learning 
models are also discussed. In Sarker (2021), the authors focused on 
the different types of deep learning models and provided a summary 
of deep learning applications in various domains.

Despite the existing surveys on deep learning that offer valuable 
insights, the increasing amount of deep learning applications and the 
existing limitations in the current studies motivated us to explore this 
topic in depth. In general, to the best of our knowledge, no survey 
paper focuses on the emerging trends in state-of-the-art applications 
and the current challenges associated with deep learning. Furthermore, 
the surveys do not discuss the issues and how deep learning addresses 
them by highlighting the key features and components in the models. 
Furthermore, most surveys either ignore or provide minimal coverage 
of the fundamentals of deep learning, which is crucial for understand-
ing the state-of-the-art models. The main objective of this paper is to 
present the most important aspects of deep learning, making it acces-
sible to a wide audience and facilitating researchers and practitioners 
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in advancing and leveraging its capabilities to solve complex problems 
across diverse domains. Specifically, we present the fundamentals of 
deep learning and the various types of deep learning models, including 
popular deep learning architectures. Then, we discuss the progress of 
deep learning in state-of-the-art applications, highlighting the key fea-
tures of the models and their problem-solving approaches. Finally, we 
discuss the challenges faced by deep learning and the future research 
directions.

To this end, we conducted automatic search strategies using ‘‘deep 
learning’’ keyword with keywords related to deep learning applications 
such as ‘‘image classification’’, ‘‘neural machine translation’’, ‘‘text gen-
eration’’, ‘‘human activity recognition’’ and ‘‘robotics’’. Then, a manual 
search was carried out by scanning the references produced by the 
automatic search, selecting relevant works and discarding the irrele-
vant ones. This survey paper collected primary studies from journals, 
conference proceedings, and books in English only. We use scientific 
databases such as IEEE Explore, ScienceDirect, SpringerLink, ACM Dig-
ital Library, Scopus and ArXiv. The ArXiv repository is used because 
it hosts numerous manuscripts that are highly relevant to the topics 
discussed in this survey. These preprints often contain novel findings 
and methodologies that may not be available in other repositories at 
the time of writing. Nevertheless, we ensure that the selected preprints 
are of high quality, authored by researchers from reputable institutions.

The remainder of this paper is organized as follows: Section 2 
describes the fundamentals of deep learning which includes layers and 
attention mechanisms, activation functions, model optimization and 
loss functions, and regularization methods. Section 3 presents the types 
of deep learning models, including the CNN architectures. Section 4 
discusses the state-of-the-art applications of deep learning. Section 5 
discusses the challenges and future directions in the field of deep 
learning. The conclusion is given in Section 6.

2. Fundamentals of deep learning

This section describes the fundamental concepts such as layer types, 
activation functions, training algorithms and regularization methods to 
provide a comprehensive understanding of the underlying principles in 
advancing the field of deep learning.

2.1. Layers

A deep learning model is characterized by having numerous hidden 
layers. The hidden layers are responsible for learning and extracting 
complex features from the input data. A hidden layer is composed of an 
arbitrary number of neurons which serves as the fundamental building 
block of a neural network as shown in Fig.  1. A neuron consists of an 
arbitrary number of inputs, each associated with a weight, which con-
trols the flow of information into the neuron during the forward pass. 
The flow of information, or forward pass, involves the computation 
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Fig. 1. A graphical representation of a neuron.

of summation of the weighted input, followed by the application of a 
transformation function to the weighted sum. Let 𝐱 = 𝑥1, 𝑥2,… , 𝑥𝑑 , 𝑗 =
0, 1,… , 𝑑 be the input vector with 𝑑 dimensions and 𝐰𝑙

𝑖 denotes the 
weights that are connected to neuron 𝑖 in layer 𝑙. The forward pass to 
neuron 𝑖 in layer 𝑙 is defined as 

𝑧𝑙𝑖 = 𝐰𝑙
𝑖 ⋅ 𝐱 =

𝑑
∑

𝑗=0
𝑤𝑙

𝑖,𝑗 ⋅ 𝑥𝑗 (1)

𝑎𝑙𝑖 = 𝑔(𝑧𝑙𝑖) (2)

where 𝑥𝑗 is the input vector of size 𝑑, 𝑤𝑙
𝑖,𝑗 is the weight associated 

with 𝑥𝑗 , connecting the input to neuron 𝑖 at layer 𝑙, and 𝑔 is the 
transformation function also known as activation function. It is worth 
noting that 𝑤0 is called bias and 𝑥0 = 1. A hidden layer wherein each 
neuron is connected to all neurons of the previous layer is known as 
the fully connected layer. The forward pass computation of a neuron 𝑎𝑙𝑖
in layer 𝑙 receiving a set of input from layer 𝑙−1 can be generalized as 
follows: 

𝑎𝑙𝑖 = 𝑔(
𝑑
∑

𝑗=0
𝑤𝑙

𝑖,𝑗 ⋅ 𝑎
𝑙−1
𝑗 ) = 𝐰𝑙

𝑖 ⋅ 𝐚
𝑙−1 (3)

where 𝐚𝑙−1 is the input vector from layer 𝑙 − 1.
Another crucial layer type is the convolutional layer, which is 

primarily used for processing data that has underlying structures, such 
as spatial patterns in image data or temporal patterns in time series 
data. Unlike a fully connected layer, each neuron in a convolutional 
layer is connected only to a subset of neurons in the previous layer, 
as shown in Fig.  2. As shown in the figure, each neuron in the hidden 
layer is connected only to a local region, a subset of nine input neurons, 
and the weights are shared across the input data. The weight-sharing 
not only significantly reduces the number of parameters of the neural 
network, but also allows the network to learn the same features across 
different spatial locations in the input (LeCun et al., 2015). Let 𝐱 be a 
two-dimensional input data with 𝐻 ×𝑊 ×𝐶 such as a grayscale image, 
where 𝐻 is the height, 𝑊  is the width and 𝐶 is the channel of the 
image data. The computation of a neuron in the convolutional layer 𝑙
is defined as 

𝑧𝑙𝑖,𝑗,𝑑 =
𝑘1
∑

𝑚=0

𝑘2
∑

𝑛=0
𝑤𝑙

𝑚,𝑛,𝑑 ⋅ 𝑥𝑖⋅𝑠+𝑚,𝑗⋅𝑠+𝑛,𝑑 (4)

𝑎𝑙𝑖,𝑗,𝑑 = 𝑔(𝑧𝑙𝑖,𝑗,𝑑 ) (5)

where 𝑤𝑚,𝑛,𝑑 is the weight connecting the input data 𝑥𝑖,𝑗,𝑑 within the 
window to the neuron in layer 𝑙 and 𝑠 is the stride or the step size of the 
window as it moves across the input data. This convolution operation 
where the filter is represented by 𝑤  slides over the input data 
𝑚,𝑛,𝑑
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Fig. 2. A neuron is connected to a local region of the input data.

Fig. 3. Summaries of the feature map using maximum or average pooling to produce 
a reduced feature map.

𝑥𝑖,𝑗,𝑑 , producing a set of output values called feature map. For a more 
hands-on understanding of this convolutional operation, readers are 
encouraged to explore CNN Explainer (poloclub/cnn-explainer, 2025), 
an interactive tool that demonstrates how convolutional layers process 
input data and generate feature maps.

Pooling layers are commonly applied after successive convolutional 
layers to progressively reduce the spatial dimensions of the feature 
maps. The spatial reduction is performed by computing the summary 
of a subset of the feature values in the feature maps as shown in Fig. 
3. The pooling operation, as shown in the figure, can use either the 
maximum or average method with a pooling size of 2 × 2 applied across 
the entire feature map, thereby reducing the size of the feature map. 
In addition to spatial reduction, pooling layers decrease the number 
of parameters and provide translation-invariant features (LeCun et al., 
2015). Let 𝐚𝑙 denotes feature map (hidden layer) 𝑙, a pooling operation 
with a pooling size of 𝑚 × 𝑛 is defined as 
𝐚𝑙+1 = 𝚙𝚘𝚘𝚕(𝐚𝑙𝑖⋅𝑠+𝑚,𝑗⋅𝑠+𝑛) (6)

where 𝚙𝚘𝚘𝚕 is either maximum or average function and 𝑠 is the stride 
or step size of the window as it moves across the feature map.

2.2. Attention mechanisms

One of the important concepts in pattern recognition is the ability to 
attend to and neglect certain parts of the input data based on their rel-
evance. This is because not all parts of the input hold equal importance 
for making predictions. Certain features exhibit a stronger correlation 
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with the output while others are less relevant. To provide a simple 
analogy, consider a set of sensors to measure room temperature. The 
sensors are deployed across different corners of the room. Each sensor 
measures temperature in its own area, and these local measurements 
are used to estimate the room temperature. However, not all sensors 
are equally important due to various factors. For instance, a sensor near 
an air-conditioning or a heater might give inaccurate readings due to 
the external temperature fluctuation caused by these systems. A sensor 
near the center of the room, away from the heating or cooling sources 
might provide more reliable readings. Therefore, when estimating the 
room temperature, we give more attention to the sensors that are less 
affected by the localized factors. In convolutional layers, all extracted 
features are treated uniformly, without consideration of the varying 
degree of the importance of the different parts of the input data. This 
limitation is addressed by the introduction of attention mechanism, 
which can dynamically assign varying levels of significance (weights) to 
the different features. This flexibility enables the deep learning models 
to prioritize the more relevant aspects of the input data, enhancing its 
ability to capture the intricate dependencies for accurate prediction. 
Given an input data 𝑥, the process of attending to the important 
components of the input is given as 
𝐴 = 𝑓 (𝑔(𝑥), 𝑥) (7)

where 𝑔 is a composite function that performs a sequence of operations 
to generate the attention or the weights and 𝑓 applies the generated 
attention 𝑔(𝑥) on the input 𝑥.

For instance, the squeeze-and-excitation (SE) attention generates the 
attention through five consecutive operations (Hu et al., 2019). First, 
the input is vectorized using global average pooling. Then the vector 
is passed to two fully connected layers, where the first one with ReLU 
activation and the second one with sigmoid activation. SE attention was 
a pioneer in channel attention. The attention module assigns varying 
weights to the channels of the feature maps. SE attention suffers from 
computational cost and the use of global average, which may cause 
information loss at the spatial level. Several efforts have been made 
to improve SE attention. Global Second-order Pooling (GSoP) attention 
performs 1 × 1 convolution on the feature maps to reduce the number 
of channels, and then computes the pairwise channel correlation, which 
is used to generate the weights (Gao et al., 2018). Efficient Channel At-
tention (ECA) replaced the fully connected layers with 1D convolution 
to reduce the number of parameters and the computational cost (Wang 
et al., 2020).

Temporal attention is an attention module that focuses on specific 
time steps in a sequence of data such as time series and video (sequence 
of images). In video processing such as recognizing human actions, 
temporal attention is used to focus on key frames at different point 
in time that contain crucial information for predicting the ongoing 
activity. Temporal adaptive module (TAM) is a temporal attention 
that can focus on short-term (local) information and global context 
information of the data (Liu et al., 2021). The composite function 
consists of a local branch for generating attention weights and a global 
branch for generating a channel-wise adaptive kernel. First, the input 
feature map is squeezed using global average pooling to reduce the 
computational cost. Subsequently, the local branch executes two 1D 
convolution operations, with the first convolution using ReLU, and 
sigmoid activation for the second to generate the local weights. The 
local weights are then multiplied with the feature map. Meanwhile, 
the global branch is composed of two fully connected layers, with 
the first layer using ReLU and the second layer employing softmax 
function to generate the adaptive kernel (weights). Self-attention is a 
form of temporal attention, initially proposed for machine translation 
to enable the deep learning models to attend different words in a 
sequence relative to other words (Vaswani et al., 2023). The attention 
module has become a fundamental building block in various natural 
language processing applications. To generate the attention weights, 
the input (word embeddings) is transformed by linear projection to 
4 
compute query, key, and value. Then, the dot product between query 
and key is computed, and the resultant is normalized by the square 
root of the size of the key. Finally, the attention weights are obtained 
by applying the softmax function. Self-attention is the fundamental 
building block of the Transformer architecture, a key deep learning 
model in natural language processing. For a more hand-on understand-
ing of self-attention and Transformer, readers are encouraged to explore 
Transformer Explainer (poloclub/transformer-explainer, 2025), an in-
teractive tool that demonstrates how self-attention mechanisms work 
in Transformer by visualizing the attention scores and how different 
inputs interact with each other.

Spatial attention focuses on specific regions or spatial location of the 
input data, enabling the deep learning models to selectively emphasize 
and ignore certain features. In the context of computer vision, spatial 
attention is crucial in capturing the spatial relationships and context 
within an image for accurate prediction. Attention gate is a spatial 
attention that can identify and focus the salient regions and suppress 
feature responses of the insignificant ones. The composite function 
consists of ReLU activation followed by 1 × 1 convolution to reduce 
channel dimension of the feature maps to a singular feature map. 
Finally, sigmoid is applied to the feature map to generate attention 
weights (Oktay et al., 2018). The self-attention in the standard Trans-
former is not effective in handling image data due to its inherent 
sequential processing nature and lacks the ability to capture spatial 
dependencies and local patterns. To address this limitation, the Vision 
Transformer (ViT) treats images as a sequence of non-overlapping 
patches. A similar computational pipeline is used to generate the at-
tention weights, the sequence of patches is transformed by linear 
projection to compute the query, key, and value (Dosovitskiy et al., 
2021). The same operations are employed to generate the attention 
weights. Self-attention is computationally costly due to its quadratic 
complexity, especially when dealing with image data. To reduce the 
complexity, two learnable linear layers, independent of the input data, 
are adopted as the key and value vectors (Guo et al., 2023).

2.3. Activation functions

The role of the activation function is to transform the weighted 
sum into a more classifiable form. This is crucial to the learning be-
havior of the deep learning model, generating non-linear relationships 
between the input and the output of the model. The activation function, 
combined with many hidden layers, allows the neural network to 
approximate highly complex, non-linear functions. Many activation 
functions are available for use in neural networks, and some of the 
functions are shown in Figs.  4–6. The figures show the plots of the 
three popular activation functions. The sigmoid is a classic example of 
an activation function used in logistic regression. It maps the weighted 
sum to a value in the range of 0 to 1 which can be used for classi-
fication. The hyperbolic tangent (tanh) is another popular choice of 
bounded activation function, which produces an output between −1 
and 1. Since it has a stronger gradient, neural network training often 
converges faster than with the sigmoid function (LeCun et al., 2012). 
For many years, sigmoid and hyperbolic tangent functions were the 
commonly used activation functions. However, both suffer from the 
vanishing gradient problem, which hinders the efficient training of 
deep neural networks with many layers (Hochreiter et al., 2001).

It was shown that neural networks with unbounded activation 
functions have the universal approximation property and reduce the 
problem of vanishing gradients. In recent years, numerous unbounded 
activation functions have been proposed for neural networks, with the 
softplus (Dugas et al., 2000) and the rectified linear unit (ReLU) (Glo-
rot et al., 2011) activation function being notable examples. These 
activation functions, especially ReLU has a pivotal role in improving 
the training and performance of deep learning models. ReLU has been 
a cornerstone of deep learning models due to its computational effi-
ciency and effectiveness in addressing the vanishing gradient problem. 
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Fig. 4. Sigmoid activation function.

Fig. 5. Hyperbolic tangent activation function.

Fig. 6. Rectified linear unit activation function.

Since then, several variants of ReLU have been proposed including 
Leaky ReLU (Maas et al., 2013), sigmoid linear unit (Misra, 2020) 
and exponential linear unit (Clevert et al., 2016), each offering unique 
advantages for building deep learning-based applications.

2.4. Parameter learning and loss functions

The weights (parameters) of deep learning models are often opti-
mized using an optimization algorithm called gradient descent, though 
other optimization algorithms may also be used. However, it has to be 
noted that gradient descent is a generic algorithm which can be used 
to solve a wide range of optimization problems. In general, gradient 
descent finds the optimal weights by iteratively updating the weights 
such that the weights will result in a minimum prediction error over all 
instances in the training set. This process is synonymous with a person 
at the top of a hill who wants to climb down to the ground. Just like 
the person may choose a path that leads to the lowest point by taking 
small steps based on the steepness of the slope, gradient descent makes 
5 
small adjustments to the weights, moving them in the direction that 
reduces the error the most. The prediction error is quantified by a loss 
function. For classification problems, the commonly used loss function 
is the negative log-likelihood loss or cross entropy loss, while the square 
loss and absolute loss are used for regression problems (Wang et al., 
2022). The weights of layer 𝑙 are updated as 
𝑤𝑙

𝑖,𝑗 = 𝑤𝑙
𝑖,𝑗 − 𝛼∇𝑤𝑖,𝑗

(8)

where 𝛼 is a hyperparameter called learning rate and ∇𝑤𝑖,𝑗
 is the 

gradient or the derivative of the loss function 𝐽 with respect to the 
weight 𝜕𝐽

𝜕𝑤𝑙
𝑖,𝑗
.

The gradient can be computed across all training set instances, an 
approach known as batch gradient descent. However, this approach 
does not always guarantee convergence to the optimal solution, as it 
may get stuck in local minima or saddle points, and the same gradient is 
used for every weight update. An alternative approach is to perform the 
weight update on the basis of a single instance, but the approach results 
in a noisy gradient and becomes computationally intensive due to the 
frequent weight update. A more commonly used approach is to perform 
the weight update over a set of training instances, known as mini-
batch gradient descent. This approach strikes a balance, providing a less 
noisy gradient and a more stable training process. For a more hands-on 
understanding of neural network training, readers are encouraged to 
explore TF playground (Smilkov and Carter, n.d.) and Initializing Neu-
ral Networks (Guo, n.d.), interactive tools demonstrating how neural 
networks are trained and the impact of hyperparameters.

Several efforts have been made to improve the efficiency of gradient 
descent. One of the earlier efforts is the inclusion of past rate of change 
in the weight update to speed up the training of deep learning models, 
the algorithm is called gradient descent with momentum (Qian, 1999). 
Another effort is to improve the training convergence by adapting the 
learning rate based on the occurrence of the features (Duchi et al., 
2011). A more recent work utilizes both adaptive learning rate and 
momentum to improve the training efficiency and convergence of deep 
learning models (Kingma and Ba, 2017).

2.5. Regularization methods

Regularization methods are employed to prevent overfitting in deep 
learning models and improve their generalization performance. Early 
stopping is a method that can detect the onset of overfitting during 
training by continuously monitoring the validation error. The model is 
considered overfitting if the validation error starts to increase at some 
point of the training while the training error is decreasing. However, 
detecting the onset of overfitting during the training of deep learning 
models is challenging due to the inherent stochasticity and the presence 
of noisy data. Several stopping criteria can be considered, such as 
using a threshold to check if the decrease of (average) validation 
error is significant and counting the number of successive increases of 
validation error (Prechelt, 2012).

Dropout is a regularization method that randomly switches off some 
neurons in the hidden layers during training with a predefined drop 
probability (dropout rate) (Srivastava et al., 2014). Dropout has the ef-
fect of training and evaluating a large number of different subnetworks 
within the models. The dropout rate is a hyperparameter that needs 
to be carefully tuned to balance regularization and model capacity. 
Different ranges of dropout rate have been suggested. The original 
author suggested a dropout rate between 0.5 and 0.8 (Srivastava et al., 
2014) while others recommended a lower dropout rate between 0.1 and 
0.3 (Park and Kwak, 2017). Furthermore, it has been suggested a low 
dropout rate due to the exponential increase in the volume of training 
data (Liu et al., 2023).

Parameter norm penalty is a regularization method that adds a 
penalty term consisting of the network’s weights to the loss function. 
During the training, the penalty term discourages large weight values 
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and hence, constraining the model’s capacity and reducing the chance 
of overfitting. The common penalty terms are 𝐿1 norm penalty (Tib-
shirani, 1996), 𝐿2 norm penalty, also known as weight decay and a 
combination of 𝐿1 and 𝐿2 (Zou and Hastie, 2005). An adaptive weight 
decay is proposed, allowing the regularization strength for each weight 
to be dynamically adjusted (Nakamura and Hong, 2019).

Despite the advantages of the mini-batch gradient descent, each 
mini-batch may comprise data from different distributions. Further-
more, the data distribution may change after each weight update, 
which could slow down the training process. Batch normalization 
overcomes this issue by normalizing the summed input to a neuron 
over a mini batch of training instances (Ioffe and Szegedy, 2015). 
An alternative method is to perform normalization across the neurons 
instead of the mini batch, a method known as layer normalization (Ba 
et al., 2016). Layer normalization is applicable in recurrent neural 
networks and overcomes the dependencies on the mini batch size.

3. Types of deep learning

Deep learning models can be categorized into deep supervised 
learning and deep unsupervised learning.

3.1. Deep supervised learning

Deep supervised models are trained with a labeled dataset. The 
learning process of these models involves calculating the prediction 
error through a loss function and utilizing the error to adjust the 
weights iteratively until the prediction error is minimized. Among the 
deep supervised models, three important models are identified, namely 
multilayer perceptron, convolutional neural network and recurrent 
neural network.

3.1.1. Multilayer perceptron
Multilayer perceptron is a neural network model with one or more 

hidden fully connected layers stacked between the input and output 
layers as shown in Fig.  7. The width (number of neurons) of the hidden 
layers and the depth (number of layers) of the network influence the 
model’s ability to learn patterns in the data. Specifically, the width 
affects the network’s ability to capture a broader range of features, 
while the depth facilitates the learning of hierarchical representations. 
Nevertheless, studies indicated that a multilayer perceptron with a 
single hidden layer can approximate any continuous function (Cybenko, 
1989; Hornik et al., 1989). Multilayer perceptron is effective in various 
industries and applications from healthcare to finance (Widrow et al., 
1994). However, a multilayer perceptron requires the input data to be 
structured in a one-dimensional format (e.g., tabular data), making it 
less suitable for unstructured data such as images, text, and speech. 
To leverage multilayer perceptron for unstructured data, a feature 
extraction or transformation into structured data is necessary.

3.1.2. Recurrent neural network
Recurrent neural network (RNN) is a neural network model that 

leverages the sequential information and memory through the use of 
recurrent connections, allowing it to effectively process data such as 
time series, text, speech and other sequential patterns. As shown in 
Fig.  8, a recurrent neural network is characterized by the recurrent 
connection, which enables the network to loop back and use internal 
state from the previous time step to the next time step. The internal 
state is parameterized by a set of weights shared across the sequence 
of data. The training of recurrent neural networks suffers from the 
issue of vanishing gradient due to the challenges of propagation of 
gradients over a long sequence of data. Variants of recurrent neu-
ral networks are introduced to overcome the problem of vanishing 
gradient, such as long short-term memory (LSTM) (Hochreiter and 
Schmidhuber, 1997) and gated recurrent memory (GRU) (Cho et al., 
2014). The improved recurrent neural networks introduce memory cell 
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Fig. 7. A fully connected neural network.

Fig. 8. A neural network with recurrent connection.

and gating mechanisms to retain and discard information in every 
time step, allowing for more effective learning dependencies in long 
sequence. The network architecture can be built using fully connected 
and convolutional layers (Shi et al., 2015).

LSTM is arguably the most widely used variant and has been applied 
in various applications such as image captioning, machine translation 
and sentiment analysis (Van Houdt et al., 2020). Similar to the stan-
dard RNNs, LSTMs process information steps by steps using a chain 
of repeating units. Each LSTM unit consists of several gates, namely 
the forget gate, input gate and output gate that control the flow of 
information from one time step to the next time step. Fig.  9 illustrates 
how information flows through these gates. The key component of 
an LSTM unit is the cell, represented by the horizontal line running 
through the top of the block. This cell maintains the state at each time 
step and is updated by the gates. Specifically, at each time step, the 
forget gate determines which information to be retained or discarded 
from the cell state based on the current input and the previous hidden 
state. The input gate decides what new information should be added to 
the cell state, while the output gate uses the updated cell state, current 
input and previous hidden state to produce the hidden state for the 
current time step.

GRU is a popular variant of RNN that is similar to LSTM but has a 
relatively simpler architecture. The network has two gates called reset 
and update to control the information flow. Unlike LSTM, GRU does 
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Fig. 9. The architecture of an LSTM unit.

Fig. 10. The architecture of an LSTM unit.

not maintain a separate internal cell state, but uses the reset gate to 
determine which parts of the information to be retained and discarded, 
and the update gate to control how much of the previous hidden state 
should be passed to the current hidden state. Fig.  10 illustrates the 
interconnection of the gates in a GRU unit.

3.1.3. Convolutional neural network
Convolutional neural network (CNN) is a neural network model 

that preserves and leverages the spatial local information in the data 
through the use of convolutional layers. Fig.  11 shows a typical ar-
chitecture of a convolutional neural network which consists of con-
volutional, pooling and fully connected layers. The convolutional and 
pooling layers are stacked alternately to automatically extract salient 
features in a hierarchical manner. The extracted features are then fed 
to fully connected layers to predict the outputs. The final feature maps 
need to be converted to a one-dimensional vector before they are fed 
to the fully connected layers. The conversion can be performed by 
7 
flattening the feature maps. CNN architecture is crucial in increasing 
the performance of the prediction, as it is designed to efficiently extract 
the feature representation of the input data, enabling more accurate 
and robust pattern recognition. Over the last decade, several CNN archi-
tectures have been proposed, whereby the focus of the improvements 
has been on enhancing the feature learning capabilities and addressing 
challenges such as vanishing gradient and diminishing feature reuse.

AlexNet is among the first CNN models that gained widespread 
recognition and success, marking a significant achievement in the field 
of deep learning for computer vision tasks (Krizhevsky et al., 2012). 
The model consists of five convolutional layers with maximum pooling 
operation performed after the first and second convolutional layers, 
followed by three fully connected layers. The first and second convolu-
tional layers utilize a filter size of 11 × 11 and 5 × 5 respectively, and 
3 × 3 filter size is used for the remaining convolutional layers. ReLU 
activation function is used to mitigate the vanishing gradient. AlexNet 
is the first deep learning architecture that demonstrated CNN’s capa-
bility for large-scale image recognition. While 8 layers was considered 
deep for its time, later deep learning architectures demonstrated that 
even deeper networks could achieve better performance.

ZFNet is a classic CNN model which has a similar architectural 
principle as AlexNet, featuring five convolutional layers with maximum 
pooling layers after the first and second convolution, followed by three 
fully connected layers (Zeiler and Fergus, 2013). The significant differ-
ences are the use of smaller filter size and stride in the convolutional 
layers and contrast normalization of the feature maps, which allows the 
model to capture better features and improve the overall performance. 
This configuration improves feature extraction and performance com-
pared to AlexNet. However, like AlexNet, its limited depth restricted its 
ability to learn more complex hierarchical features.

Network-in-network introduces two innovative concepts to enhance 
the performance of the model (Lin et al., 2014). The first was introduc-
ing a block of convolutional layers consisting of 𝑘 × 𝑘 convolution fol-
lowed by two 1 × 1 convolution operations. The pointwise convolutions 
are similar to applying a multilayer perceptron on the feature maps, 
allowing the model to approximate more abstract feature representa-
tions. In the preceding models, the final feature maps are vectorized 
by flattening operation for classification by the fully connected layers. 
Instead of flattening, network-in-network model calculates the spatial 
average of each feature map, and the resulting vector is fed to softmax 
function for classification. This approach is parameter-less, significantly 
reducing the number of parameters. Although this approach makes 
it more computationally efficient, its general performance does not 
always surpass models with deeper architecture.

VGGNet attempts to improve the CNN architecture by adding more 
convolutional layers, specifically up to 19 layers to capture more 
intricate feature representation from input data, followed by three fully 
connected layers (Simonyan and Zisserman, 2015). ReLU activation 
function is used to reduce vanishing gradient. Unlike AlexNet, all 
convolutional layers utilize a small fix filter size of 3 × 3 and maximum 
pooling layer is added after a stack of two or three convolutional layers. 
This configuration allows the model to extract more discriminative 
features and decreases the number of parameters. The architecture 
provides better generalization and finer feature extraction, but it comes 
at the cost of a large number of parameters (138 million), making it 
more computationally expensive for practical applications.

GoogleNet or Inception v1 leverages the fact that visual data can 
be represented at different scales by incorporating a module which 
consists of multiple convolutional pipelines with different filter sizes
(Szegedy et al., 2014). The module known as inception utilizes three 
kernel sizes (5 × 5, 3 × 3, 1 × 1) to capture spatial and chan-
nel information at different scales of resolution as shown in Fig.  12. 
This configuration enables a more effective feature extraction at both 
fine-grained and coarse-grained information from input data while 
maintaining computational efficiency. The model architecture utilizes 
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Fig. 11. A neural network with convolutional and pooling layers followed by fully connected layers.
Fig. 12. The inception module.
Source: Adapted from Szegedy 
et al. (2014).
the inception module at the higher layers, while the traditional con-
volution and maximum pooling block is used to extract primitive and 
basic features. The inception modules are stacked upon each other, 
with maximum pooling operation is performed occasionally to reduce 
the spatial resolution of the feature maps. GoogleNet utilizes global 
average pooling to vectorize the final feature maps before passing it 
to a fully connected layer for classification. However, the complexity 
of the model architecture may hinder its interpretability and tuning 
compared to simple models. GoogleNet has been further enhanced in 
later Inception models by introducing batch normalization, auxiliary 
classifier and deeper architecture.

Increasing the number of layers enhances the model performance, 
mainly for solving complex tasks. However, training a very deep neural 
network is challenging due to the vanishing gradient problem, where 
the gradients that are used to update the network become insignificant 
or extremely small as they are backpropagated from the output layer 
to the earlier layers. A model called Highway Network overcomes this 
issue by introducing a gating mechanism that regulates the information 
flow of the layers, enabling the flow of information from the earlier 
layers to the later layers (Srivastava et al., 2015). Consequently, this 
not only mitigates the vanishing gradient problem, but also renders the 
gradient-based training more tractable, enabling the training of very 
deep neural networks consisting as many as 100 layers. However, the 
gating mechanism increases the model complexity, making the model 
mode resource-intensive and less suitable for real-time applications.

The gating mechanism of Highway Network increases the number 
of parameters for regulating the information flow. ResNet is a CNN 
architecture that incorporates residual (skip) connection that allows 
information to bypass certain layers, mitigating the vanishing gra-
dient problem (He et al., 2015). ResNet architecture stacks residual 
blocks, which consists of two or three of convolutional layers with 
batch normalization and ReLU, and a skip connection which adds the 
input to the output of the final convolutional layer as shown in Fig. 
13. If the input dimension does not match with the residual output 
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dimension, a linear projection is performed by the residual connection 
to match the dimensions. This concept of ‘‘feature reuse’’ is central to 
ResNet’s design, as the skip connection allows the features learned in 
the previous layers to be directly reused in the layer layers, enhancing 
the model’s ability to learn hierarchical features. In comparison to 
the gating mechanism of Highway Network, the residual connection is 
parameter-free, and thus does not incur additional computational costs. 
Furthermore, the connections are never closed whereby all information 
is always passed through the layers. This innovative concept enables the 
training of very deep neural networks boasting as many as 152 layers. 
However, as the model gets deeper, the effectiveness of skip connection 
diminishes and the performance gain is negligible. Furthermore, ResNet 
can be more complex to implement and fine-tune compared to simpler 
architecture.

DenseNet is another CNN architecture that overcomes the vanishing 
gradient problem. DenseNet follows the same approach as ResNet and 
Highway Network, utilizing skip connection to allow information flow 
from the earlier layers to later layers. However, DenseNet takes this 
concept one step further, by introducing a dense block consisting of 
multiple convolution functions (layers) with each convolution function 
performs batch normalization followed by ReLU and 3 × 3 convolution. 
Each convolutional layer in the dense block receives feature maps from 
all its preceding layers. Hence, the connection is referred to as a dense 
connection (Huang et al., 2017). This configuration as shown in Fig. 
14 maximizes information flow, feature reuse and preserves the feed-
forward nature of the network, improving the feature learning. To 
reduce the computational costs, a block of 1 × 1 convolutional with 
batch normalization and maximum pooling layers known as transition 
block is used to reduce the spatial dimension of the feature maps. 
The model architecture integrates these dense and transition blocks, 
stacking them alternately. The network depth can reach up to 264 
layers. However, Dense blocks can become computationally expensive 
due to the increasing number of feature maps. Furthermore, it is prone 
to overfitting due to the dense connection between the layers.
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Fig. 13. A residual connection which explicitly incorporates features from previous 
layers into the later layers.
Source: Adapted from He et al. (2015).

Although skip connections in ResNet effectively mitigate the vanish-
ing gradient problem, a new challenge arises in the form of diminishing 
feature reuse as the network becomes deeper. Diminishing feature reuse 
refers to the diminishing effectiveness of the previously learned feature 
maps in subsequent layers, impacting the final prediction. WideRes-
Net is a CNN architecture that is based on ResNet with the aim to 
mitigate diminishing feature reuse problem. Instead of making the 
network deeper, WideResNet makes the network wider by increasing 
the number of channels by 𝑘 factor (Zagoruyko and Komodakis, 2017). 
The increased width allows the model to capture more diverse features, 
enhancing its ability to learn complex relationships in the input data. 
This configuration improves feature learning efficiency while mitigat-
ing depth-related issues such as vanishing gradients and overfitting. 
However, wider models may increase memory usage and computational 
costs.

ResNeXt addresses the diminishing feature reuse by capturing more 
efficient and diverse features of the input data. ResNeXt introduces a 
concept of cardinality which is loosely based on the inception module 
as shown in Fig.  15. Cardinality refers to the number of independent 
and identical paths, where each path performs transformation of the 
input data, divided along the channel dimension (Xie et al., 2017). In 
other words, instead of solely relying on increasing the depth of the 
model, ResNeXt enhances the feature learning by parallelizing the fea-
ture extraction through this cardinal path. In the proposed architecture, 
each path configuration is similar to the residual block of ResNet. The 
output from each path is then aggregated to form a comprehensive 
and diverse representation of the input data. The skip connection is 
used to mitigate the vanishing gradient problem. ResNeXt improves 
feature learning efficiency by balancing the depth and the width of the 
model, but its increased architectural complexity introduces additional 
parameters such as the number of cardinality, and increases memory 
usage and computational costs.

These CNN models were trained using the ImageNet (ImageNet, 
n.d.) and/or CIFAR (CIFAR, n.d.) datasets. ImageNet is considered 
as the most influential and important dataset in deep learning for 
computer vision research. The dataset was used to train all popular 
CNN models such as VGGNet, ResNet and DenseNet due to its large 
number of labeled images. The dataset contains 1.2 million training 
images, 50,000 validation images and 100,000 test images across 1000 
object classes. CIFAR is a comparatively smaller dataset and includes 
two variants: CIFAR-10 and CIFAR-100. Both contain 50,000 training 
images and 10,000 test images, with CIFAR-10 covering 10 object 
classes and CIFAR-100 covering 100 classes.

Figs.  16 and 17 show the top five classification error rates of 
the CNN models on ImageNet and CIFAR-10, respectively. Error rates 
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for CIFAR-100 are not reported, as it was used only by Network-in-
network, DenseNet, Wide ResNet and ResNeXt. It is also noted that 
the error rates on ImageNet are sourced from the models’ published 
manuscripts, which may differ from the values reported on the ILSVRC 
website. As shown in the figures, error rates are generally similar 
between the datasets, despite their differences in complexity. This could 
be attributed to ImageNet’s large number of training images, allowing 
the models to generalize well across its 1000 classes. Furthermore, it is 
evident that the newer models, such as ResNeXt, DenseNet, Inception-
v4 and ResNet significantly outperform older models due to their 
more advanced architectures. Among the evaluated models, DenseNet 
achieved the best performance on CIFAR-10 with a 3.46% error rate, 
while Inception-v4 achieved the lowest error rate on ImageNet at 
3.70%.

3.1.4. Applications of deep supervised learning models
The deep supervised learning models have become integral to ad-

vancements in various applications such as medical imaging, internet of 
things and robotics due to their ability to extract complex hierarchical 
features. Typically, the studies utilize transfer learning to build the pre-
dictive models for solving the problem at hand, especially in scenarios 
with limited labeled data. This approach leverages pre-trained models 
to accelerate model development and improve accuracy. In Chougrad 
et al. (2018), VGGNet-16, Inception-v3 and ResNet-50 are employed as 
pre-trained models for breast cancer screening. Specifically, the weights 
of the convolutional layers are frozen, and the fully connected predict-
ing layers are replaced with new ones. The models are then fine-tuned 
to adapt to the specific characteristics of the breast cancer dataset, 
improving their performance on the target task. In medical image 
segmentation, ResNet (Zhao et al., 2020) and DenseNet (Cinar et al., 
2022) have been utilized to progressively capture rich spatial features 
from the input images, systematically reducing their dimensions while 
preserving essential information. These compressed feature represen-
tations are then gradually expanded and refined through upsampling 
operations, followed by localizing and predicting the segmentation 
regions.

In other studies, the architecture of the CNN models have been 
enhanced to improve their feature extraction capability. In Sun et al. 
(2023), ResNet architecture is modified by replacing ReLU with
LeakyReLU and incorporating self-attention before the predicting layers 
to assign weights based on the feature importance. In another study, 
the residual block of ResNet-18 is enhanced by integrating a channel 
attention before the skip connection addition (Dong et al., 2023). 
Additionally, a channel attention featuring two parallel processing 
pipelines is introduced before the predicting layers. One pipeline ap-
plies maximum pooling while the other uses average pooling, allowing 
the model to capture diverse features. Each pooled output is then 
processed by convolutional layers, and the resulting feature maps 
are concatenated to combine the extracted features for prediction. 
In Hou et al. (2024), DenseNet is modified to reduce feature reuse by 
controlling the number of feature maps inputs to each layer using a 
parameter. This parameter controls the number of feature maps based 
on the distance between layers, whereby if the distance between two 
layers is large, the input feature maps are reduced to half of the 
original number. Additionally, the network width is modified based 
on depth, leading to a gradual widening of the network as it deepens. 
The modification reduces the complexity of DenseNet, improving both 
memory usage and computational efficiency.

The LSTMs and GRUs have been exploited to capture temporal infor-
mation in time series data. In Narotamo et al. (2024), AlexNet, VGG16 
and ResNet50 are used to extract spatial features from ECG images, 
while LSTM and GRU are used to extract temporal features from the 
ECG signals. The features are then combined and passed to a self-
attention module, followed by fully connected layers for predictions. 
In Zhang et al. (2024), 1D-CNN is hybridized with LSTM to exploit the 
spatial feature extraction capabilities of convolutional layers and the 
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Fig. 14. A 5-layer dense block. 
Source: Adapted from Huang 
et al. (2017).
Fig. 15. A cardinal block. 
Source: Adapted from Xie 
et al. (2017).
Fig. 16. Top five classification errors on ImageNet.
temporal sequence learning capabilities of LSTM. The time series data is 
first processed by a series of convolutional and maximum pooling layers 
to extract spatial features. These features are then fed into 10 layers of 
LSTM capture temporal dependencies and sequential patterns within 
the data, improving the performance of the predictions. A hybrid deep 
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learning model with parallel feature learning pipelines is introduced 
for classifying motion signals into human activities (Mohd Noor et al., 
2022). The feature learning pipelines consist of convolutional and 
maximum pooling layers to extract local features from the sequence 
of segmented signals (windows). The local features are concatenated 
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Fig. 17. Top one classification errors on CIFAR-10.
to form a sequence, which is then fed into an LSTM to capture tem-
poral dependencies and patterns. A similar hybrid model is proposed, 
combining ResNet-18 with an LSTM for EEG signal classification. The 
feature maps produced by ResNet-18 are flattened and fed into the 
LSTM, followed by a fully connected layer for prediction.

3.2. Deep unsupervised learning

Deep unsupervised models are trained with an unlabeled dataset. 
The learning process of these models discovering patterns, structures, 
and representations within the data without relying on explicit labels 
or supervision. Instead, these models often learn by optimizing ob-
jective functions that capture the underlying data characteristics such 
as clustering, learning useful feature embeddings and reconstructing 
input data from compressed representations. Examples of deep unsu-
pervised models are autoencoders, generative adversarial networks and 
restricted Boltzmann machines.

Restricted Boltzmann Machine is a generative neural network model 
that learns a probability distribution based on a set of inputs. The 
model consists of a visible (input) layer and a hidden layer with sym-
metrically weighted connections as shown in Fig.  18. The input layer 
represents the input data with each node corresponding to a feature 
or variable while the hidden layer learns the abstract representation of 
the input data. Restricted Boltzmann machine model is trained using 
contrastive divergence, an algorithm that is based on a modified form 
of gradient descent, utilizing a sampling-based approach to estimate the 
gradient (Hinton, 2012). It has found success in solving combinative 
problems such as dimensionality reduction, collaborative filtering and 
topic modeling.

Deep Belief Network can be viewed as a stack of restricted Boltz-
mann machines, comprising a visible layer and multiple hidden lay-
ers (Hinton et al., 2006) as shown in Fig.  19. Deep belief network has 
two training phases. The initial phase is known as pretraining in which 
the network is trained layer by layer, with each layer serves as a pre-
training layer of the subsequent layers. This sequential learning allows 
the hidden layers learn complex hierarchical feature representation of 
the data. The second phase is called fine-tuning whereby the deep belief 
network model can be further trained with supervision to perform tasks 
such as classification and regression (Hinton, 2009).

An autoencoder is a generative neural network model that learns 
to encode the input data into a compressed representation and then 
reconstructs the original data from this representation. The layers that 
encode the input data are known as encoder while the layers that 
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Fig. 18. A restricted Boltzmann machine.

Fig. 19. A deep belief network.
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Fig. 20. An autoencoder.

responsible for the reconstruction are referred to as the decoder as 
shown in Fig.  20. The encoded data (hidden layer) represents the 
abstract features of the input data, also known as latent space or 
encoding. The decoder can be removed from the autoencoder, creat-
ing a standalone model that can be used for data compression and 
dimensionality reduction (Romero et al., 2017; Li et al., 2020). The 
decoder can also be replaced with predictive layers for classification 
task (Mohd Noor, 2021). The network architecture can be built using 
fully connected and convolutional layers (Li et al., 2023).

Several autoencoder variants have been introduced to improve the 
autoencoder’s ability to capture better feature representation. Some 
introduced penalty terms to the loss function such as sparsity penalty 
(sparse autoencoder) (Ng et al., 2011) to encourage sparse represen-
tation and Jacobian Frobenius norm (contractive autoencoder) (Rifai 
et al., 2011) to be less sensitive to small and insignificant variations 
in the input data while encoding the feature representation. Others 
trained the autoencoder to recover original data from corrupted data 
with noise (Vincent et al., 2008). An improved denoising autoencoder 
knowns marginalized denoising autoencoder has been proposed which 
marginalizes the noise by adding a term that is linked to the encoding 
layer (Chen et al., 2012). Variational autoencoder is a variant of 
autoencoder that has similar architecture: encoder, latent space and 
decoder. Despite the similarity, instead of learning a fixed encoding, 
variational autoencoder learns the probability distribution of the input 
data in the latent space (Kingma and Welling, 2022). The model can 
be used to generate data by sampling from the learned probability 
distribution. The network architecture can be built by stacking more 
than one fully connected layer and convolutional layer.

Generative Adversarial Network (GAN) is another generative neural 
network model that is designed for generating data that adheres closely 
to the distribution of the original training set. The model consists 
of two different neural networks namely generator and discriminator 
as shown in Fig.  21. The generator learns to imitate the distribution 
of the training set given a noise vector, effectively outsmarting the 
discriminator. Simultaneously, during the training, the discriminator 
is trained to differentiate between the real data from the training 
set and synthetic data generated by the generator (Goodfellow et al., 
2014). This intricate dynamic between the networks drives an iterative 
learning process whereby the generator continually refines its ability 
to create synthetic data that closely resembles the real data, while the 
discriminator enhances its ability to distinguish between authentic and 
fake data.

The model can be extended by providing the labels to both gen-
erator and discriminator in which the model known as conditional 
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GAN, capable of generating 1000 image classes (Odena et al., 2017). 
Conditional GANs require a labeled dataset, which might limit its 
application. InfoGAN is similar to conditional GAN, but the labels are 
substituted with latent codes, which allows the model to be trained in 
an unsupervised manner (Chen et al., 2016). GANs often suffer from 
mode collapse, where the model can only generate a single or small set 
of outputs. Wasserstein GAN improves the training by utilizing Wasser-
stein loss function, which measures the difference between the real 
and synthesized data distribution (Weng, 2019). ProGAN tackles the 
training instability of GAN by progressively growing the generator and 
discriminator. The idea is that the model is scaled up gradually, starting 
with the simplest form of the problem, and little by little the problem’s 
complexity is increased as the training progresses (Karras et al., 2018). 
StyleGAN leverages the progressive GAN’s approach and neural style 
transfer to improve the quality of the generated data (Karras et al., 
2019). The model is characterized by the independent manipulation 
of both style and content, allowing it to generate diverse styles and 
high-quality data.

4. State-of-the-art deep learning applications

As discussed in the previous section, the application of deep learn-
ing ranges from computer vision (Tan et al., 2020), natural lan-
guage processing (Otter et al., 2021), healthcare (Esteva et al., 2019), 
robotics (Soori et al., 2023), education (Hernández-Blanco et al., 2019), 
and many others. This section presents the applications of deep learning 
across several areas.

4.1. Computer vision

Computer vision is an essential field in artificial intelligence (AI). 
It is a field of study that focuses on enabling computers to acquire, 
analyze and interpret visual inputs to derive meaningful information. 
The visual inputs can take many forms such as digital images, sequence 
of images or video and point cloud, and the source of these inputs 
can be camera, LiDAR and medical scanning machine. Deep learning, 
specifically CNN models have been widely used in real-world computer 
vision applications including image classification, object detection and 
image segmentation. This section discusses more details about the 
recent advancements in deep learning models that have been achieved 
over the past few years.

4.1.1. Image classification
Image classification is a fundamental task in computer vision, which 

involves categorizing an image into one of predefined classes based on 
the visual content. The objective of image classification is to enable 
computers or machines to differentiate between objects within im-
ages, in a manner similar to how humans interpret visual information. 
Image classification is a crucial component in various applications 
such as robotics, manufacturing, and healthcare. LeNet-5, introduced 
in 1998, is one of the earliest convolutional neural networks that 
was successfully trained to classify handwritten digits. The model un-
derwent a series of improvements, including the use of tanh and 
average pooling, which enhanced its ability to extract hierarchical 
features, ultimately improving overall performance. The model ar-
chitecture comprises two convolutional layers, each with an average 
pooling layer, followed by two fully connected layers, including the 
output layer (Lecun et al., 1998). Since then, numerous CNN models 
have been proposed based on LeNet-5 for image classification (Simard 
et al., 2003; Matsugu et al., 2003) but the most significant one is 
AlexNet in 2012, which saw a transformative breakthrough in deep 
learning. AlexNet is considered the first CNN model with a large 
number of parameters that significantly improved the performance of 
image classification on a very large dataset (ImageNet). The model won 
first place in ILSVRC 2012, improving the test error from the previous 
year by almost 10% (Krizhevsky et al., 2012). Numerous significant 



M.H. Mohd Noor and A.O. Ige Engineering Applications of Artiϧcial Intelligence 159 (2025) 111225 
Fig. 21. A generative adversarial network.
CNN models have been introduced in subsequent ILSVRC competitions 
including ZFNet, VGG16, GoogleNet, ResNet and ResNext. In general, 
the research focused on increasing the number of layers, addressing the 
problem of vanishing gradient and diminishing of feature reuse.

Research in image classification continues to evolve with a focus on 
addressing key challenges to improve the classification performance. 
One notable trend is the formulation of the loss function to address 
problems such as neglecting well-classified instances and imbalance 
distribution of class labels. In a particular study, an additive term 
is introduced to the cross-entropy loss to reward the models for the 
correctly classified instances. This formulation encourages the models 
to also pay attention to well-classified instances while focusing on 
the bad-classified ones (Zhao et al., 2022). Another study proposes an 
asymmetric polynomial loss function using the Taylor series expansion. 
The loss function allows the training to selectively prioritize contribu-
tions of positive instances to mitigate the issue of imbalance between 
negative and positive classes (Huang et al., 2023). The asymmetric 
polynomial loss requires a large number of parameters to be fine-tuned 
and may lead to overfitting. A robust asymmetric loss is formulated 
by introducing a multiplicative term to control the contribution of 
the negative gradient and making it less sensitive to parameter opti-
mization (Park et al., 2023). Combining multiple deep learning models 
improves the overall performance by leveraging the diverse strengths 
of individual models. However, identifying the optimal combination is 
non-trivial due to the large number of hyperparameters. A straightfor-
ward method is to employ the weighted sum rule (Nanni et al., 2023). 
To enhance the overall performance, an algorithm, named greedy 
soups, adds a model based on the validation accuracy (Wortsman et al., 
2022). The final prediction is produced via averaging. Multi-symmetry 
ensembles framework improves the building of diverse deep learning 
models by utilizing contrastive learning (Loh et al., 2023). Then, the 
diverse models are sequentially combined based on their validation 
accuracy.

Vision transformers (ViT) offers an alternative to convolutional 
neural networks that have long been the dominant architecture for im-
age classification, by leveraging self-attention mechanisms for scalable 
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global representation learning. Despite its effectiveness, ViT is sensi-
tive to hyperparameter optimization and substandard performance on 
smaller datasets (Xiao et al., 2021). Furthermore, ViT lacks the ability 
to leverage local spatial features which is inherent in convolutional 
neural networks (Wu et al., 2021). Therefore, several studies attempt 
to incorporate convolutional layers into ViT architecture to improve 
its performance and robustness. In particular, conformer is a network 
architecture with two branches: CNN branch and a transformer branch 
to extract local and global features respectively (Peng et al., 2023). 
Both branches are connected by two ‘‘bridges’’ of 1 × 1 convolution and 
up or down sampling operations, allowing the branches to share their 
features and enhance the feature representation. Both branches output 
predictions which are combined to produce the final prediction.

A hybrid architecture, named MaxViT, combines convolutional net-
works and vision transformer to address the lack of scalability issues 
of self-attention mechanisms when the model is trained on large input 
size (Tu et al., 2022). The improved vision transformer is composed 
of two modules whereby the first module attends local features in 
non-overlapping image patches and the global features are attended 
by processing a grid of sparse and uniform pixels. The transformer is 
stacked with a block of convolutional layers to extract local spatial 
features. The architecture of MaxViT is shown in Fig.  22. Another 
study proposes a convolutional transformer network, introducing the 
depthwise convolutional block into the ViT (Ma et al., 2024). This 
configuration allows the model to exploit the ability of convolutional 
networks to extract local spatial features while the ViT attends the 
extracted local features to focus on relevant information, enhancing the 
model’s ability to capture complex patterns and relationships. Specif-
ically, instead of linear mapping, depth-wise convolutional mapping 
is used to generate query, key, and value matrices. Table  2 lists the 
summary of state-of-the-art image classification.

4.1.2. Object detection
Deep learning plays a major role in significantly advancing the 

state-of-the-art in object detection performance. Region-based CNN (R-
CNN) is the first breakthrough in object detection that combines CNN 
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Table 2
Summary of state-of-the-art image classification.
 Ref. Description Results (Datasets and metrics)  
 Zhao et al. (2022) The study introduced an encouraged loss that rewards well-classified examples with 

additive bonuses to enhance their contribution during training, addressing issues in 
representation learning, energy optimization, and makes the decision margin grows 
faster

CIFAR-10
Accuracy: 92.97% 
ImageNet
Accuracy: 76.43%

 

 Huang et al. (2023) The study introduced asymmetric polynomial loss to address class imbalance by 
decoupling gradient contributions from positive and negative instances, increasing 
the impact of updates for minority instances and helping the model focus on the 
more challenging, less frequent cases

MS-COCO
mAP: 90.08
NUS-WIDE
mAP: 31.27

 

 Park et al. (2023) The study introduced robust asymmetric loss to address class imbalance by 
emphasizing minority instances through an asymmetric weighting mechanism, 
allowing the model to focus more on the less frequent, yet critical minority instances

ISIC2018
Accuracy: 0.852
APTOS2019
Accuracy: 0.826

 

 Peng et al. (2023) This study introduced dual network structure to extract local and global feature 
representations using convolutional layers and transformer

ImageNet
Accuracy: 81.3 (Conformer-Ti)
Accuracy: 83.4 (Conformer-S)
Accuracy: 84.1 (Conformer-B)

 

 Tu et al. (2022) This study introduced MaxViT, a hybrid attention model, combining convolutional 
layers with transformer-based architecture whereby it uses convolutional layers in 
the early stages to capture local patterns efficiently, and then applies a multi-axis 
attention mechanism to capture both local and global dependencies more effectively

ImageNet
Accuracy: 85.72 (MaxViT-T)
Accuracy: 86.19 (MaxViT-S)
Accuracy: 86.66 (MaxViT-B)
Accuracy: 86.70 (MaxViT-L)

 

 Ma et al. (2024) This study introduced convolutional transformer network that integrates 
convolutional layers and transformer encoder blocks whereby a transformer encoder 
block consists of multi-head self attention and feed-forward network layers with skip 
connections

Diving 48
Accuracy: 77.3 (CTN-a), 78.2 (CTN-b)
Epic-Kitchens
Accuracy: 44.1 (CTN-a), 45.9 (CTN-b)

 

Fig. 22. The architecture of MaxViT (Tu et al., 2022).

with selective region proposals (Girshick et al., 2014). The region 
proposals are the candidate bounding boxes serving as the potential 
region of interests (objects) within the input image, and the CNN are 
used to extract features from the region proposals and classify the 
regions for object detection. An improved model, named Fast R-CNN 
introduces two prediction branches: object classification and bound-
ing box regression which improves the overall performance of object 
detection (Girshick, 2015). However, R-CNN and Fast R-CNN models 
are computationally expensive and slow, thus practically infeasible for 
real-time applications. Addressing this issue, Fast R-CNN is integrated 
with a region proposal network, referred to as Faster R-CNN (Ren 
et al., 2015). The region proposal network (RPN) is used to efficiently 
generate region proposals for object detection. RPN takes an input 
image and output a set of rectangle object proposals, each with a 
confidence score to indicate the likelihood of an object’s presence. 
To this end, RPN introduces the concept of anchor boxes, whereby 
multiple bounding boxes of different aspect ratios are defined over the 
feature maps produced by the convolutional networks. These anchor 
boxes are then regressed over the feature maps to localize the objects, 
contributing to the improved speed and effectiveness of Faster R-CNN. 
The training of Faster R-CNN is divided into two stages. First, the RPN 
is pre-trained to generate the region proposals and then, the Fast R-CNN 
is trained using the region proposals generated by the RPN for object 
detection. The backbone network responsible for extracting the features 
for Faster R-CNN is either ZFNet or VGG16.
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In two-stage object detectors, the region proposals are generated 
first, and then used for object detection. The two-stage process is 
computationally intensive and infeasible for real-time object detection 
applications. You Only Look Once or YOLO proposes a one-stage de-
tection by directly predicting bounding boxes and object’s confidence 
score in a single forward pass through the neural network (Redmon 
et al., 2016). This single pass architecture significantly reduces the 
computational complexity, making YOLO suitable for real-time object 
detection applications. In YOLO, the input image is divided into 𝑆 × 𝑆
grids, each grid cell is responsible for detecting the objects present in 
the cell. Specifically, each grid cell predicts multiple bounding boxes 
and associated object’s confidence score, enabling simultaneous object 
detection across the entire image. Subsequent enhancements such as 
YOLOv3 (Redmon and Farhadi, 2018) and YOLOv4 (Bochkovskiy et al., 
2020) are proposed, improving the model’s capability and accuracy. 
Single Shot Multibox Detector (SSD) is another one-stage detector, 
which aims to address the issue of real-time object detection (Liu 
et al., 2016). SSD also eliminates the region proposal generation and 
directly predicts bounding boxes and confidence scores, reducing the 
computational complexity. To improve the overall performance, SSD 
produces the predictions from different levels of feature maps, allowing 
detection of objects of different sizes in the input image.

A common issue in object detection problems is the extremely 
imbalanced ratio of foreground to background classes. Addressing this 
issue, RetinaNet introduces a loss function that is based on the cross 
entropy called focal loss. Focal loss reduces the loss contribution of 
easily classified objects, allowing the model training to focus on the dif-
ficult objects (Lin et al., 2020). RetinaNet adopts the Feature Pyramid 
Network (FPN) (Lin et al., 2017) with ResNet as the backbone network 
for extracting the feature maps. FPN is a network architecture with 
a pyramid structure that efficiently captures multiscale feature repre-
sentation, facilitating object detection across various sizes. To further 
improve the overall performance, EfficientDet introduces bidirectional 
FPN, which incorporates multi-level feature fusion to better capture 
multiscale feature representation (Tan et al., 2020). Also, the model 
utilizes EfficientNet (Tan and Le, 2019) as the backbone network to 
achieve a balance between computational efficiency and accuracy.

Object detection performance often relies on a post-processing step 
called non-maximum suppression (NMS) to eliminate duplicate detec-
tions and select the most relevant bounding boxes. Specifically, NMS 
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sorts all detection boxes based on their confidence scores, selects a 
box with the maximum score and discards the other boxes with a 
significant overlap with the selected box. This process is repeated on the 
remaining detection boxes. However, due to the inconsistency between 
the confidence score and the quality of object localization, NMS retains 
poorly localized bounding boxes with high confidence score while 
discarding more accurate predictions with poor confidence score. To 
mitigate this limitation, instead of discarding the neighboring boxes 
with significant overlap, soft-NMS applies Gaussian function to lower 
their confidence scores (Bodla et al., 2017). The idea is not to discard 
the neighboring bounding boxes, but gradually decline their scores 
based on the extent of the overlap with the selected box. This results 
in a smoother suppression, preserving the better-localized bounding 
boxes.

Adaptive NMS introduces an adaptive threshold for the suppression 
of bounding boxes (Liu et al., 2019). The algorithm dynamically adjusts 
the threshold based on the level of overlapping of the selected box 
with the other bounding boxes. Similar method is reported in Husham 
Al-Badri et al. (2023) whereby an adaptive NMS is proposed by dynami-
cally adjusting the suppression criteria based on intersection over union 
(IoU) values. The IoU values are compared with a threshold and applies 
an additional iteration to vote for each detected proposal, ensuring 
better distinction between closely positioned objects. The method helps 
preserve multiple high-confidence bounding boxes, mitigating the issue 
of incorrectly merging adjacent objects into one. Redundant bounding 
boxes are often not filtered out due to their low IoU values with the best 
bounding box, leading to high false positives. In Jiang et al. (2024), a 
learning-based NMS is proposed to reduce false positives by integrating 
the NMS process into the model’s learning framework. Specifically, a 
novel NMS-aware loss is formulated that incorporates IoU to adjust 
bounding box weights, boosting negative attention for low IoU bound-
ing boxes and enhancing positive weights for high IoU bounding boxes. 
Furthermore, regression assisted classification branch is introduced 
to aid classification by leveraging regression prediction relationships 
between bounding boxes and their best counterparts. In Shi et al. 
(2024), the authors formulated similarity distance metric is proposed to 
evaluate the similarity between bounding boxes. The proposed method 
considers the location and shape of the boxes, and adapts dynamically 
to different datasets and object sizes. This method improves label 
assignment by learning hyperparameters automatically, eliminating the 
need for manual tuning and enhancing detection performance for tiny 
objects detection.

Detection Transformer (DETR) is an end-to-end trainable object 
detection model that leverages the transformer architecture to elimi-
nate the need for handcrafted components such as anchor boxes and 
non-maximum suppression (Carion et al., 2020). The self-attention 
mechanism of the transformer captures the global context and relation-
ships between different parts of the image, allowing it to localize the 
objects and remove duplicate predictions. The model is trained with 
a set of loss functions that perform bipartite matching between the 
predicted and ground truth objects. DETR uses ResNet as backbone 
network. Despite the success of DETR in simplifying and improving 
object detection tasks, DeTR suffers from a long training time and 
low performance at detecting small objects due to its reliance on the 
self-attention mechanism of the transformer, which lacks a multiscale 
feature representation. To mitigate this limitation, Deformable DETR 
introduces a multiscale deformable attention module which can ef-
fectively capture feature representation at different scales (Zhu et al., 
2020). Furthermore, the attention module leverages deformable con-
volution, allowing the model to adapt to spatial variation and capture 
more informative features in the input data.

Dynamic DETR addresses the same issues by utilizing a deformable 
convolution-based FPN to learn multiscale feature representation (Dai 
et al., 2021). The model replaces the transformer encoder with a 
convolution-based encoder to attend to various spatial features and 
channels. Moreover, an ROI-based dynamic attention is introduced at 
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the transformer decoder, allowing the model to focus on the region 
of interests. This modification allows the model to effectively detect 
small objects and converge faster during training. The architecture of 
dynamic DETR is shown in Fig.  23. DETR utilizes bipartite matching 
between the ground truth and the predicted objects to assign each 
ground truth object to a unique prediction, limiting the localization 
supervision. In Jia et al. (2023), a hybrid matching scheme is intro-
duced, combining the original one-to-one matching with an auxiliary 
one-to-many matching during training, improving training efficiency 
and detection accuracy without adding inference complexity. A training 
scheme known as Teach-DeTR is proposed to improve the overall per-
formance of DeTR (Huang et al., 2023). The training scheme leverages 
the predicted bounding boxes by other object detection models during 
the training by calculating the loss of one-to-one matching between the 
object queries and the predicted boxes. Table  3 lists the summary of 
state-of-the-art object detection.

4.1.3. Image segmentation
Image segmentation is another important task in which deep learn-

ing has a significant impact. One of the earliest deep learning models 
for image segmentation is the fully convolutional network (Long et al., 
2015). A fully convolutional network consists of only convolutional 
layers which accepts an input of an arbitrary size and produce the 
predicted segmentation map of the same size. The authors adopted the 
AlexNet, VGG16 and GoogleNet, replace their fully connected layers 
with convolutional layers and append a 1 × 1 convolutional layer, 
followed by bilinear up-sampling to match the size of the input. The 
model was considered a significant milestone in image segmentation, 
demonstrating the feasibility of deep learning for semantic segmenta-
tion trained in end-to-end manner. Deconvolution network is another 
popular deep learning model for semantic segmentation (Noh et al., 
2015). The model architecture consists of two parts: encoder and 
decoder. The encoder takes an input image and uses the convolu-
tional layers to generate the feature maps. The feature maps are fed 
to the decoder composed of un-sampling and deconvolutional layers 
to predict the segmentation map. SegNet is another encoder–decoder 
model for semantic segmentation (Badrinarayanan et al., 2017). The 
encoder is a sequence of convolutional (with ReLU) and maximum 
pooling blocks which is analogous to a convolutional neural network. 
The decoder is composed of up-sampling layers which up-samples the 
inputs using the memorized pooled indices generated in the encoder 
phase, and convolutional layers without non-linearity. The encoder 
progressively reduces the resolution of the input data while extracting 
abstract features through a series of convolutional and pooling layers. 
This process causes the loss of fine-grained information, degrading the 
overall performance of segmentation. LinkNet mitigates this limitation 
by passing the feature maps at several stages generated by the encoder 
to the decoder, hence reducing information loss (Chaurasia and Culur-
ciello, 2017). The model architecture of LinkNet is similar to SegNet, 
but utilizes ResNet as the encoder.

While Faster R-CNN is a significant approach in object detection 
task, it has been extended to perform instance segmentation task. One 
such extension is Mask R-CNN which is based on Faster R-CNN, intro-
duces an additional branch for predicting the segmentation mask (He 
et al., 2017). Similar to Faster R-CNN, Mask R-CNN utilizes the RPN 
to generate region proposals and then the region of interest alignment 
is applied to extract more accurate features from the proposed regions. 
Mask R-CNN does not leverage the multiscale feature representation 
which may degrade the overall performance of segmentation. To over-
come this limitation, Path Aggregation Network (PANet) incorporates 
the FPN and introduces a bottom-up pathway to facilitate the prop-
agation of the low-level information (Liu et al., 2018). The pathway 
takes the feature maps of the previous stage as input and performs 
3 × 3 convolution with stride 2 to reduce the spatial size of the feature 
maps. The generated feature maps are then fused with the feature maps 
from the FPN through the lateral connection. The model adopts the 
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Fig. 23. The architecture of dynamic DeTR (Dai et al., 2021).
Table 3
Summary of state-of-the-art object detection.
 Ref. Description Results (Datasets and metrics)  
 Husham Al-Badri et al. (2023) This study introduced an adaptive NMS method that dynamically adjusts 

suppression criteria based on intersection over union (IoU) values, applying 
an additional iteration to improve the distinction between closely positioned 
objects and preserve high-confidence bounding boxes, reducing false positives

Rumex weeds
IoU: 91.2, mAP: 90

 

 Jiang et al. (2024) This study proposed a learning-based NMS that integrates the NMS process 
into the model’s learning framework through a novel NMS-aware loss 
function, which adjusts bounding box weights using IoU to reduce false 
positives, while introducing a regression-assisted classification branch to 
enhance classification by leveraging bounding box prediction relationships

CrowdHuman
mAP: 90.1

 

 Shi et al. (2024) This study proposed a similarity distance metric to evaluate bounding box 
similarity by considering location and shape, dynamically adapting to different 
datasets and object sizes, automatically learning hyperparameters to improve 
label assignment, and enhancing detection performance for tiny objects

AI-TOD
mAP: 26.5, AP50: 57.7, AP75: 20.5
SODA-D
mAP: 32.8, AP50: 59.4, AP75: 31.3
VisDrone2019
mAP: 28.7, AP50: 50.3

 

 Dai et al. (2021) This study introduced Dynamic DETR, which enhances the original DETR by 
introducing dynamic attention mechanisms in both the encoder and decoder 
stages. This approach addresses limitations related to small feature resolution 
and slow training convergence, resulting in improved performance and 
efficiency in object detection tasks

COCO2017
mAP: 49.3, AP50: 68.4, AP75: 53.6

 

 Jia et al. (2023) This study proposed a method that combines a one-to-one matching branch 
with an auxiliary one-to-many matching branch during training to improve 
the detection accuracy of DETR

COCO2017
mAP: 59.4, AP50: 77.8, AP75: 65.4

 

 Huang et al. (2023) This study proposed a training scheme to enhances DETR by leveraging 
predicted bounding boxes from other teacher models including RCNN-based 
and DETR-based detectors using knowledge distillation. The method does not 
introduce extra parameters or computational overhead during inference

COCO2017
mAP: 58.5, AP50: 77.4, AP75: 64.8

 

three branches as in Mask R-CNN. MaskLab is an instance segmentation 
model based on Faster R-CNN, consisting of object detection, segmenta-
tion, and instance (object) center direction prediction branches (Chen 
et al., 2018). The direction prediction provides useful information to 
distinguish instances of the same semantic label, allowing the model to 
further refine the instance segmentation results.

Attention mechanisms have been integrated into the segmentation 
models to learn the weights of multiscale features at each pixel location. 
A multistage context refinement network introduces a context attention 
refinement module that is composed of two parts, context feature 
extraction and context feature refinement (Liu et al., 2023). The context 
feature extraction captures both local and global context information, 
fuses both contextual information and passes it to the context feature 
refinement while the context feature refinement removes redundant in-
formation and generates a refined feature representation, improving the 
utilization of contextual information. The context attention is added to 
the skip connection between the encoder and the decoder. Handcrafted 
features are often abandoned for automatic feature extraction using 
convolutional networks. However, it is argued that the interpretability 
and domain-specific knowledge embedded in handcrafted features can 
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provide valuable insights. To this end, an attention module based on the 
covariance statistic is introduced to model the dependencies between 
local and global context of the input image (Liu et al., 2022). Two 
types of attention are introduced: spatial covariance attention focuses 
on the spatial distribution and channel covariance attention attends to 
the important channels. Furthermore, the covariance attention does not 
require feature shape conversion, hence significantly reducing the space 
and time complexity of the model.

The convolutional layers use local receptive fields to process input 
data which can be effective for exploiting spatial patterns and hierar-
chical features but may find it difficult to capture global relationships 
across the entire image. The ViT has been leveraged to mitigate this 
issue in semantic segmentation (Strudel et al., 2021). Specifically, 
the input image is divided into patches and treated as input to the 
transformer to capture the long-range relationship between the patches, 
significantly improving the prediction of the segmentation map. Global 
context ViT aims to address the lack of ViT’s ability to leverage local 
spatial features (Hatamizadeh et al., 2023). As shown in Fig.  24, the 
transformer consists of local and global self-attention modules. The role 
of global self-attention is to capture the global contextual information 
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Fig. 24. The architecture of global context ViT (Hatamizadeh et al., 2023).
Table 4
Summary of state-of-the-art image segmentation.
 Ref. Description Results (Datasets and metrics)  
 Liu et al. (2023) The study proposed a multistage context refinement network with a context attention 

refinement module that improves feature representation by capturing local and global 
context, fusing information, and removing redundancies, with attention integrated into the 
encoder–decoder skip connections

PASCAL VOC2012
mIoU: 79.05
ADE20K MI
mIoU: 41.25
Cityscapes
mIoU: 79.42

 

 Liu et al. (2022) This study introduced a covariance attention to model the local and global dependency for 
the feature maps by formulating a covariance matrix, providing complementary information 
to improve segmentation performance

Cityscapes
mIoU: 82.9
Pascal-Context
mIoU: 51.7
ADE20K
mIoU: 43.78

 

 Strudel et al. (2021) This study introduced a transformer for semantic segmentation Cityscapes
mIoU: 81.3
Pascal-Context
mIoU: 59.0
ADE20K
mIoU: 53.63

 

 Hatamizadeh et al. (2023) This study proposed an improved vision transformer architecture that employs alternating 
global and local self-attentions to effectively capture both local and global spatial 
information

ADE20K
mIoU: 49.2

 

 Shi et al. (2023) This study introduced TSG module that uses attention maps to calculate multiscale feature 
weights for each image patch, enabling the model to adaptively select the optimal scale 
based on patch-query correlation

Cityscapes
mIoU: 83.6
Pascal-Context
mIoU: 64.9
ADE20K
mIoU: 56.93

 

from different image regions while the short-range information is cap-
tured by the local self-attention. Multiscale feature representation is 
crucial for accurate semantic segmentation. However, the transformer 
often combines the features without considering their appropriate (op-
timal) scales, thus affecting the segmentation accuracy. Transformer 
scale gate is a module proposed to address the issue of selecting 
an appropriate scale based on the correlation between patch-query 
pairs (Shi et al., 2023). The transformer takes attention (correlation) 
maps as input and calculates the weights of the multiscale features for 
each image patch, allowing the model to adaptively choose the optimal 
scale for each patch. Table  4 lists the summary of state-of-the-art image 
segmentation.

4.1.4. Image generation
Image generation refers to the process of creating images based 

on input texts. Generally, the task can be divided into three stages. 
The first stage is extracting features from the input text, followed 
by generating the image and finally controlling the image generation 
process to ensure the output meets specific criteria and constraints. 
This section focuses on the progress made in the development of deep 
learning models of the second stage (image generation) since it directly 
impacts the quality of the generated images. Variational autoencoder is 
one of the earliest deep learning models that is capable of generating 
images (Kingma and Welling, 2022). Variational autoencoder learns 
to generate data by capturing the underlying (Gaussian) distribution 
of the training data. During the generation process, the distribution 
parameters are sampled and passed to the decoder to generate the 
output image. Although the generated images are blurry and unsatis-
factory, it has shown a lot of potential in image generation tasks. The 
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introduction of GAN significantly improved the quality of generated 
images. GAN consists of two connected neural networks, a generator 
and a discriminator that are trained simultaneously in a competitive 
manner (Goodfellow et al., 2014). The generator learns to generate 
realistic images to fool the discriminator, while the discriminator learns 
to distinguish between fake and real images. The generated images 
are less blurry and more realistic. Several enhanced models have been 
proposed to improve its usability and overall performance such as 
conditional GAN (Odena et al., 2017) which allows us to tell what 
image to be generated, and the deep convolutional GAN (DCGAN) (Rad-
ford et al., 2015) which provides a more stable structure for image 
generation. DCGAN is the basis of many subsequent improvements in 
GANs.

StackGAN divides the process of image generation into two stages
(Zhang et al., 2017). Stage-I generates a low-resolution image by cre-
ating basic shapes and colors and the background layout using the 
random noise vector. Stage-II completes the details of the image and 
produces a high-resolution photo-realistic image. StackGAN++ is the 
enhanced model of StackGAN whereby it consists of multiple generators 
with shared parameters to generate multiscale images (Zhang et al., 
2018). The generators have a progressive goal with the intermediate 
generators generating images of varying sizes and the deepest generator 
producing the photo-realistic image. HDGAN is a generative model 
featuring a single-stream generator with hierarchically nested discrim-
inators at intermediate layers (Zhang et al., 2018). These layers, each 
connected to a discriminator, generate multiscale images. The lower 
resolution outputs are used to learn semantic image structures while 
the higher resolution outputs are used to learn fine-grained details of 
the image. StackGAN heavily relies on the quality of the generated 
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Fig. 25. The architecture of AttnGAN (Xu et al., 2018).
image in Stage-I. DM-GAN incorporates a memory network for image 
refinement to cope with badly generated images in Stage-I (Zhu et al., 
2019). The memory network dynamically selects the words that are 
relevant to the generated image, and then refines the details to produce 
better photo-realistic images.

AttnGAN is the first to incorporate attention mechanisms into the 
multiple generators to focus on words that are relevant to the gen-
erated image (Xu et al., 2018). To this end, in addition to encoding 
the whole sentence into a global sentence vector, the text encoder 
encodes each word into a word vector as shown in Fig.  25. Then, the 
image vector is used to attend to the word vector using the attention 
modules at each stage of the multistage generators. Furthermore, At-
tnGAN introduces a loss function to compute the similarity between 
the generated image and the associated sentence, improving the per-
formance of image generation. A similar work is reported whereby the 
model known as ResFPA-GAN, incorporates attention modules into the 
multiple generators (Sun et al., 2019). Specifically, a feature pyramid 
attention module is proposed to capture high semantic information 
and fuse the multiscale feature, enhancing the overall performance of 
the model. DualAttn-GAN improves AttnGAN by incorporating visual 
attention modules to focus on important features along both spatial and 
channel dimensions (Cai et al., 2019). This allows the model to better 
understand and capture both the context of the input sentence and the 
fine details of the image, resulting in more realistic image generation.

Although multistage generators improve image generation perfor-
mance by leveraging multiscale representation, the generated images 
may contain fuzzy shapes with coarse features. DF-GAN replaces the 
multistage generators with a single-stage deep generator featuring 
residual connections and trained with hinge loss (Tao et al., 2022). Fur-
thermore, DF-GAN introduces a regularization strategy on the discrimi-
nator that applies a gradient penalty on real images with matching text, 
allowing the model to generate more text-matching images. DMF-GAN 
an improved DF-GAN, incorporates three novel components designed to 
leverage semantic coherence between the input text and the generated 
image (Yang et al., 2024). The first component is the recurrent semantic 
fusion module, which models long-range dependencies between the fu-
sion blocks. The second component is the multi-head attention module, 
which is placed towards the end of the generator to leverage the word 
features, forcing the generator to generate images conditioned on the 
relevant words. The last component is the word-level discriminator, 
which provides fine-grained feedback to the generator, facilitating the 
learning process and improving the overall quality of the generated 
images. Fig.  26 shows the architecture of DMF-GAN. The process of 
image generation involves feeding a noise vector to the generator at 
the very beginning of the network. However, as the generator goes 
deeper, the noise effect may be diminished, affecting the diversity of the 
image generation results. To mitigate this issue, DE-GAN incorporates 
a dual injection module into the single-stage generator (Jiang et al., 
2024). The dual injection module consists of two text fusion layers 
followed by a noise broadcast operation. The text fusion layer takes 
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the sentence embedding and fuses it with the input feature map using 
the fully connected layer. Then noise is injected into the output feature 
map to retain the randomness in the generation process, improving 
diversity and generalization of the model. Table  5 lists the summary 
of state-of-the-art image generation.

4.2. Natural language processing

Natural language processing (NLP) refers to the field of AI that 
concerns with enabling computers to process, analyze and interpret 
human languages to extract useful information. Some of the common 
tasks in NLP are machine translation, text classification and text gen-
eration. Deep learning has been widely applied to solve real-world 
NLP problems. This section presents the recent advancements in deep 
learning models that have been designed for NLP over the past few 
years.

4.2.1. Text classification
Text classification, known as text categorization, is a task that in-

volves assigning predefined categories or labels to a piece of text based 
on its content. The task is commonly used in various applications such 
as document classification, sentiment analysis and spam filtering. Nu-
merous deep learning models have been proposed for text classification 
in the past few decades, and multilayer perceptron is one of the earliest 
architectures adopted to classify documents (Calvo and Ceccatto, 2000; 
Yu et al., 2008). The model typically has a single hidden layer with a 
number of units between 15 and 150. Text data is inherently sequential, 
as it is composed of a series of words and symbols arranged in a 
specific order. This property makes RNN and its variants particularly 
well-suited for processing and analyzing text data. In Arevian (2007), 
RNN with two hidden layers, each with 6 units, is used to classify news 
documents into eight classes. A study was conducted to investigate the 
variants of RNN such as LSTM and GRU for text classification (Huang 
and Feng, 2020). The input to the model is a sequence of words of fixed 
length. The input sequence is also sliced into smaller subsequences of 
fixed length and passed to an independent model for parallelization. 
A convolutional layer can extract local features, allowing the model to 
leverage hierarchical temporal information in textual data. A hybrid 
model of convolutional and LSTM architecture is proposed for text 
classification (Wang et al., 2019). Two parallel convolutional layers are 
used to extract features from word embeddings, followed by maximum 
pooling layers to reduce the feature dimensions. The reduced features 
are then concatenated and passed to LSTM for prediction.

Although CNN and RNN provide excellent results on text classifi-
cation tasks, the models lack the ability to attend to specific words 
based on their importance and context. To address this limitation, an 
attention mechanism is incorporated into the model to focus on the 
important features, enhancing the text classification accuracy. In Liu 
and Guo (2019), two attention modules are introduced to capture 
the contextual information of the feature sequence extracted by bidi-
rectional LSTM. The first attention module attends the sequence in 



M.H. Mohd Noor and A.O. Ige Engineering Applications of Artiϧcial Intelligence 159 (2025) 111225 
Fig. 26. The architecture of DMF-GAN (Yang et al., 2024).
Table 5
Summary of state-of-the-art image generation.
 Ref. Description Results (Datasets and metrics)  
 Tao et al. (2022) This study introduced a one-stage GAN architecture, employing a Target-Aware 

Discriminator to enhance text-image semantic consistency and utilizes deep text-image 
fusion blocks for effective feature integration, resulting in improved image authenticity and 
relevance

CUB
IS: 5.10, FID: 14.81
COCO
FID: 19.32

 

 Yang et al. (2024) This study proposed a deep multimodal fusion generative adversarial networks that allow 
effective semantic interactions for fusing text information into the image synthesis process

CUB
IS: 5.42, FID: 13.21
COCO
IS: 36.72, FID: 15.83

 

 Jiang et al. (2024) This study proposed a deep learning-based method which utilizes BERT to extract sentiment 
information and analyze sentiment at the sentence and word level with SVM for sentiment 
classification

CUB
IS: 4.86, FID: 18.94
COCO
IS: 18.33, FID: 28.79

 

forward direction, while the backward sequence is attended by the 
second attention module. The convolutional layers are used before 
the bidirectional LSTM to extract features from the word embedding. 
The attention modules require sequential processing using RNN-based 
architecture such as LSTM and GRU, which may lead to information 
loss and distorted representations, particularly in long sequence. Fur-
thermore, the attention modules focus on inter-sequence relationships 
between the input sequence and the target, ignoring the intra-sequence 
relationships or the dependencies between the words. In Lin et al. 
(2017), the deep learning model is integrated with self-attention to 
capture the intra-sequence relationships between the features in the 
sequence. A multilayer of bidirectional LSTMs is utilized to extract the 
feature sequence from the word embedding before the self-attention 
module attends the feature sequence to compute the attention weights. 
To further improve the overall performance, a multichannel features 
consisting of three input pipelines is introduced (Li et al., 2020). Each 
pipeline concatenates the word vector with a feature vector derived 
from the input sequence such as the word position, part-of-speech 
and word dependency parsing. The input pipeline is connected to 
bidirectional LSTM, followed by a self-attention module to learn the 
dependencies between the features in the sequence.

The transformer is a deep learning architecture that transforms 
sequential data using self-attention mechanisms, allowing long-range 
dependencies and complex patterns to be captured. The architecture is 
the basis of various advanced deep learning models and the Bidirec-
tional Encoder Representations from Transformers popularly known as 
BERT is one of the examples that leverage transformer for pre-training 
on large scale textual data (Devlin et al., 2018). BERT is a bidirectional 
transformer encoder that is designed for various NLP tasks, capable of 
capturing the contextual information from both preceding and succeed-
ing words in the input sequence. Several improvements have been made 
to BERT to enhance its overall performance, such as ALBERT (Lan et al., 
2019), RoBERTa (Liu et al., 2019) and DeBERTa (He et al., 2020). The 
improvements are centered around refining the pre-training approaches 
such as dynamic masking of the training instances, training with a block 
of sentences and representing each input word using two vectors, both 
content and position of the word. Most of the recent works leverage 
BERT and its variants to capture effective feature representation of the 
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input sequence. In Rodrawangpai and Daungjaiboon (2022), BERT and 
its variants are leveraged to capture the long-range dependencies of the 
input tokens. The features are then passed to a layer normalization and 
a linear fully connected layer with dropout for classification. Similar 
work is reported in Murfi et al. (2024) whereby BERT is used to 
extract the features and the features are then passed to a hybrid of 
convolutional and recurrent neural networks. The traditional machine 
learning algorithms have been used to classify the features extracted by 
BERT (Hao et al., 2023). The study shows machine learning algorithms 
can effectively leverage the rich contextual features extracted by BERT 
for downstream classification tasks.

In text classification, the text labels can help in capturing the words 
relevant to the classification. The label-embedding attentive model is 
one of the earliest attempts to joint learn the label and word embed-
dings in the same latent space and measure the compatibility between 
labels and words using cosine similarity (Wang et al., 2018). The joint 
embedding allows the model to capture more effective text represen-
tations, increasing the overall performance of the model. LANTRN is a 
deep learning model that leverages label embedding extracted by BERT 
and entity information e.g. person name and organization name for text 
classification (Yan et al., 2023). The entity recognition module is based 
on bidirectional LSTM and conditional random field layers to calculate 
the probability of each word in each entity label. The model introduces 
a label embedding bidirectional attention to learn the attention weights 
of token-label and sequence-label pairs. Furthermore, a transformer 
consisting of RNN and a multi-head self-attention mechanism is in-
troduced to learn local short-term dependencies of multiple short text 
sequences and long-term dependencies of the input sequence. Aspect 
refers to a specific attribute of an entity within the text, and incor-
porating this information enhances the model’s understanding of the 
nuances of the text. BERT-MSL is a multi-semantic deep learning model 
with aspect-aware enhancement and four input pipelines: left sequence, 
right sequence, global sequence and aspect target (Zhu et al., 2023). 
The aspect-aware enhancement module takes the features extracted by 
BERT, and performs average pooling followed by a linear transform. 
Then the output is concatenated with the outputs produced by the local 
and global semantic learning modules. The concatenated features are 
then jointly attended by a multi-head attention for text classification. 
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Fig. 27. The architecture of BERT-MSL (Zhu et al., 2023).
Table 6
Summary of state-of-the-art text classification.
 Ref. Description Results (Datasets and metrics)  
 Rodrawangpai and Daungjaiboon 
(2022)

The study proposed an enhanced RoBERTa by incorporating layer 
normalization and dropout to enable smoother gradients, faster training and 
reduced overfitting, thus, improving model generalization

NEISS
Accuracy: 0.98

 

 Murfi et al. (2024) The study employed IndoBert to extract features from text data which were 
then passed to a hybrid deep learning model for sentiment analysis

Shopee
Accuracy: 0.8612 (CNN-GRU)
Tokopedia
Accuracy: 0.8768 (LSTM-CNN)
Lazada
Accuracy: 0.8710 (LSTM-CNN)

 

 Hao et al. (2023) This study proposed a deep learning-based method which utilizes BERT to 
extract sentiment information and analyze sentiment at the sentence and word 
level with SVM for sentiment classification

NLPCC-SCDL
Accuracy: 95.12%

 

 Yan et al. (2023) This study proposed LANRTN model for text classification, integrating an 
R-Transformer with label embedding, attention mechanisms, and an entity 
recognition model to capture both global dependencies and label-aware 
contextual information

Reuters Corpus Volume I
Micro F1-score: 0.893, Arxiv Academic Paper Dataset
Micro F1-score: 0.718

 

 Zhu et al. (2023) The paper proposed a BERT-MSL model for aspect-based sentiment analysis, 
integrating multiple semantic learning modules and merging them using 
multi-head self-attention and linear transformation layers for enhanced 
classification

14Lap
Accuracy: 82.24%, Macro-average F1-score: 78.98%
14Rest
Accuracy: 89.11%, F1-score: 84.07%
15Rest
Accuracy: 88.53%, Macro-average F1-score: 71.41%
16Rest
Accuracy: 93.09%, Macro-average F1-score: 81.24%
Twitter
Accuracy: 74.89%, Macro-average F1-score: 73.43%

 

Fig.  27 shows the architecture of BERT-MSL. Table  6 lists the summary 
of state-of-the-art text classification.

4.2.2. Neural machine translation
Neural machine translation (NMT) refers to the automated process 

of translating text from one language to another language. Numerous
deep learning models have been proposed for NMT, which can be 
categorized into RNN-based and CNN-based models. One of the first 
successful RNN-based models is the encoder–decoder (Cho et al., 2014; 
Sutskever et al., 2014). The model consists of two connected sub-
networks (the encoder and the decoder) for modeling the translation 
process, as shown in Fig.  28. The encoder reads the source sentence 
word by word and produces a fixed-length context vector (final hidden 
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state). This process is known as source sentence encoding, as shown in 
the figure. Given the context vector, the decoder generates the target 
sentence (translation) word by word. This modeling of the translation 
can be seen as a mapping between the source sentence to the target 
sentence via the intermediate context vector in the semantic space. 
The context vector represents the summary of the input sequence’s 
semantic meaning, providing a compressed representation that captures 
the essence of the source sentence. However, the compression process 
can sometimes result in the loss of information, especially those early in 
the sequence. Bidirectional RNN may mitigate the loss of information 
by modeling the sequence in reverse order. However, the problem can 
persist, particularly in cases where the input is a long sequence.
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Fig. 28. The architecture of an encoder–decoder. 
Source: Adapted from Stahlberg (2020).
Attention mechanism was introduced to solve the problem of learn-
ing long input sequences (Bahdanau et al., 2014). Attention alleviates 
this issue by attending on different words of the input sequences when 
predicting the target sequences at each time step. Unlike the standard 
encoder–decoder model, attention derives the context vector from the 
hidden states of both the encoder and decoder, and the alignment 
between the source and target. This mechanism allows the model to 
focus on the important words, increasing the overall accuracy of the 
translation. Several alignment score functions have been proposed for 
calculating the attention weights. Some popular functions are addi-
tive (Bahdanau et al., 2014), dot-product, location-based (Luong et al., 
2015), and scaled dot-product (Vaswani et al., 2023). The attention 
weights are calculated by attending to the entire hidden states of the 
encoder. This attention, also known as global attention, is computation-
ally expensive. Instead of attending to all hidden states, local attention 
attends to a subset of hidden states, thus reducing the computational 
cost (Luong et al., 2015). Google Neural Machine Translation is a 
popular encoder–decoder model with an attention mechanism that 
significantly improves the accuracy of machine translation (Wu et al., 
2016). As shown in Fig.  29, the model consists of a multilayer of LSTMs 
with eight encoder and decoder layers and an attention connection 
between the bottom layer of the decoder to the top layer of the encoder. 
Furthermore, to deal with the challenging words to predict, a word is 
tokenized into subwords e.g. feud is broken down into ‘‘fe’’ and ‘‘ud’’, 
allowing the model to generalize well to new and uncommon words. 
A year later, the self-attention mechanism was proposed, significantly 
improving the overall accuracy of machine translation (Vaswani et al., 
2023). Self-attention, also known as intra-attention, allows the deep 
learning model to capture the dependencies between the input words. 
The self-attention mechanism is the fundamental building block of the 
transformer model, which has since become a cornerstone in natural 
language processing and other domains.

Despite the success of transformer, the model falls short in capturing 
nuances of human language and struggles with tasks requiring deeper 
understanding of context. This can be especially challenging when the 
tasks involve formality, colloquialism, and subtle cultural references 
that may not directly equivalent in the target language, resulting in 
inaccurate translation or losing the original meaning. One of the ap-
proaches to include context into the input sequence is concatenating 
the current source sentence with the previous (context) sentences and 
feeding the whole input to the transformer (Lupo et al., 2023). The 
model is trained to predict the translated sentence including the context 
translation. At inference time, only the translation is considered while 
the context translation is discarded. Furthermore, the approach encodes 
the sentence position and segment-shifted position to improve the 
distinction between current sentences and context sentences. In Rippeth 
et al. (2023), the source sentence is prefixed with the summary of the 
document to contextualize the input sentence. The summary is the set 
of salient words that represents the essence of the document, resolving 
ambiguity associated with the translation. A study was conducted to de-
termine the optimal technique of aggregating contextual features (Wu 
et al., 2022). Three techniques were studied namely concatenation 
mode, flat mode and hierarchical mode, and the experimental results 
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indicate that concatenation mode achieved the best results. In Kim 
et al. (2023), a training method is introduced to train the deep learning 
machine translation model to generate translation involving honorific 
words. The training method indicates the honorific context in the target 
sentence using an honorific classifier to guide the model to attend to 
the related tokens. Unlike other studies where the context features are 
included by concatenation, the training method assigns weights to the 
context tokens indicated by the honorific classifier. This allows the 
model to generate a more accurate translation with honorifics.

The performance of transformers relies on large-scale training data. 
However, for the vast majority of languages, only limited amounts 
of training data exist. To mitigate this problem, recent studies intro-
duce shallow transformer architectures (Gezmu and Nürnberger, 2022), 
explore the effect of hyperparameter finetuning (Araabi and Monz, 
2020) and leveraging visual input as contextual information for the 
translation task (Meetei et al., 2023). The semi-supervised neural ma-
chine translation is used for translating low resource Egyptian Arabic 
dialects to modern standard Arabic (Faheem et al., 2024). The study 
utilizes three datasets: bilingual Egyptian-standard Arabic and two 
monolingual Egyptian Arabic and standard Arabic. First, a transformer-
based model is trained in a supervised manner using the bilingual 
dataset. Then, the model is trained in an unsupervised manner using 
both monolingual datasets. The unsupervised approach employs an 
Encoder–Decoder model with Byte Pair Encoding for tokenization and 
handling unknown words. The monolingual corpora are merged and 
used to improve the model by iteratively generating synthetic sentence 
pairs between Egyptian Arabic and standard Arabic, allowing the model 
to learn the correspondence between them. In Li et al. (2024), the 
authors exploit monolingual corpus to enhance the bilingual dataset 
for model training. Furthermore, a new loss function is proposed as 
a replacement for traditional cross-entropy loss, allowing the model 
to learn with uncertainty in the presence of noise. Additionally, con-
trastive re-ranking is employed to refine translation results by selecting 
the most confident output from multiple candidates. Table  7 lists the 
summary of state-of-the-art neural machine translation.

4.2.3. Text generation
Text generation refers to the process of creating texts based on a 

given input, whereby the input can be in the form of texts, images, 
graphs, tables or even tabular data. Due to the various forms of inputs, 
text generation has a wide range of applications, including creative 
writing, image captioning and music generation. This section focuses 
on the progress made in text-to-text generation tasks such as question 
answering, dialog generation and text summarization. The recurrent 
neural network and its variants play an important role in text gen-
eration tasks for their strong ability to model sequential data. One 
of the earliest works on question answering is based on the RNN-
based encoder–decoder model, whereby the encoder takes the question 
embedding and processes it using bidirectional LSTM, and the decoder 
generates the corresponding answer (Nie et al., 2017). Additionally, to 
prevent semantic loss and enable the model to focus on the important 
words in the input sequence, a convolution operation is applied to the 
word embedding, and an attention mechanism is then used to attend 
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Fig. 29. The architecture of Google Neural Machine Translation (Wu et al., 2016).
Table 7
Summary of state-of-the-art neural machine translation.
 Ref. Description Results (Datasets and metrics)  
 Lupo et al. (2023) This study incorporated context into the input sequence by concatenating the 

current source sentence with previous context sentences, and the model is 
trained to predict the translation with context, while encoding sentence 
positions to distinguish between current and context sentences

En→De
ContraPro: 82.54
En→Ru
Voita: 75.94

 

 Rippeth et al. (2023) The paper proposed a method to enhance translation accuracy of ambiguous 
words by prefixing source sentences with salient words extracted from related 
pseudo-documents, thereby providing additional context without altering 
standard model architectures

En→De
BLEU: 22.0, COMET: 0.785

 

 Wu et al. (2022) The paper investigated three most common methods to aggregate the 
contextual features: concatenation mode, flat mode and hierarchical mode

En→De
BLEU: 30.89
De→En
BLEU: 36.84
En→Zh
BLEU: 20.06
Zh→En
BLEU: 20.50

 

 Kim et al. (2023) The paper introduced formality classifier to incorporate formality-related 
contexts into the model training

AI-HUB (En→Ko)
BLEU: 27.90
OpenSubtitles201 (En→Ko)
BLEU: 20.70
BSD, AMI and OpenSubttles2018 (En→Ja)
BLEU: 13.67

 

 Faheem et al. (2024) This study employed a semi-supervised neural machine translation approach 
to translate low-resource Egyptian Arabic dialects to Modern Standard Arabic, 
utilizing bilingual and monolingual datasets, with a transformer-based model 
trained in both supervised and unsupervised manners to generate synthetic 
sentence pairs and improve translation accuracy

Egyptian-standard Arabic
BLEU: 24 (300 word embedding)
BLEU: 29.5 (512 word embedding)

 

 Li et al. (2024) The study proposed a new loss function to handle uncertainty in noisy data, 
and used contrastive re-ranking to select the most confident translation from 
multiple candidates

Zh→Ma
BLEU: 28.12
Ma→Zh
BLEU: 23.53
Zh→In
BLEU: 28.91
In→Zh
BLEU: 22.76

 

to the output of the convolution operation. Similar work is reported 
in Yin et al. (2016) in which a knowledge-based module is introduced 
to calculate the relevance score between the question and the relevant 
facts in the knowledge base. This improves the text (answer) generation 
by the decoder. Another work is described in Li et al. (2016) where 
an encoder–decoder with attention for dialog generation is optimized 
using reinforcement learning. The model is first trained in a supervised 
learning manner and then improved using the policy gradient method 
to diversify the responses. Ambiguous content in question answering 
sentences is a challenge in text generation and can lead to incorrect and 
uncertain responses. Cross-sentence context aware bidirectional model 
22 
introduces a parallel attention module to compute the co-attention 
weights at the sentence level, accounting for the relationships and 
similarities in the question and the answer (Wu et al., 2020).

The transformer has been leveraged for text generation tasks. An 
incremental transformer-based encoder is proposed to incrementally 
encode the historical sequence of conversations (Li et al., 2019). The 
decoder is a two-pass decoder that is based on the deliberation network, 
generates the next sentence. The first pass focuses on contextual coher-
ence of the conversations, while the second pass refines the output of 
the first pass. BERT and ALBERT have been used as pre-trained models 
for question answering task (Alrowili and Vijay-Shanker, 2021). The 
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study found that the performance of the models is sensitive to random 
assignment of the initial weights especially on small datasets (Al-
rowili and Vijay-Shanker, 2022). T-BERTSum is a model based on 
BERT, designed to address the challenge of long text dependence and 
leveraging latent topic mapping in text summarization (Ma et al., 
2021). The model integrates a neural topic module to infer topics and 
guide summarization, uses a transformer network to capture long-range 
dependencies and incorporates a multilayer of LSTM for information 
filtering.

The generated texts often lack diversity and may exhibit repetitive 
patterns. To address this issue, feature-aware conditional GAN (FA-
GAN) is proposed for controllable category text generation (Li et al., 
2023). The generator consists of BERT, a category encoder, a relational 
memory core (RMC) decoder. BERT acts as a feature encoder, improves 
contextual representation and mitigates mode collapse while the cate-
gory encoder embeds categorical information for text generation. The 
RMC decoder utilizes a self-attention mechanism to capture interactions 
between features, generating more expressive and diverse texts. The 
discriminator includes an additional classification head to ensure the 
generated texts match specified categories. Traditional text generation 
has largely focused on binary style transfers, but real-world applications 
require capturing diverse styles, which existing methods struggle to 
achieve. In Kwon et al. (2024), a multi-class conditioned text gener-
ation model is proposed using a transformer-based decoder with an 
adversarial module, a style attention module and a generation module. 
The adversarial module extracts style-excluded representation from the 
input text. The style attention mechanism then introduces the desired 
style into the text representation through concat attention mechanism, 
producing a conditioned representation. Finally, the generation module 
utilizes the conditioned representation to generate stylistically diverse 
text. 

Exploiting domain knowledge is essential in reducing the semantic 
gap between the deep learning models and the text corpus. KeBioSum 
is a knowledge infusion framework to inject domain knowledge into 
the pre-trained BERTs for text summarization (Xie et al., 2022). In the 
framework, the relevant information is detected and extracted from the 
domain knowledge, generating label sequences of the sentences. The 
label data is then used to train the text summarization model using 
discriminative and generative training approaches, infusing the knowl-
edge into the model. Large language models (LLMs) have been used for 
text generation with exceptional quality and diversity. LLMs, trained on 
extensive corpus data, have a deep understanding of human language, 
allowing them to interpret and generate texts. In Hajipoor et al. (2025), 
GPTGAN is introduced that leverages an LLM as a guiding mentor to a 
GAN-Autoencoder model for text generation. The approach involves the 
GPT model to generate a sequence of words given a subset of the input 
sequence, and the generated text is mapped into latent space by the 
transformer-based encoder. The latent representation is then used by 
the transformer-based decoder to generate the text. Furthermore, local 
discriminators are introduced to refine the text generation because the 
generated words by the GPT model may be inaccurate. Table  8 lists the 
summary of state-of-the-art text generation.

4.3. Time series and pervasive computing

Pervasive computing, often referred to as ubiquitous computing, is 
the process of integrating computer technology into everyday objects 
and surroundings so that they become intelligent, networked, and 
able to communicate with one another to offer improved services 
and functionalities (Weiser, 1999). According to He et al. (2020), the 
role of pervasive computing is foremost in the field where it provides 
the ability to distribute computational services to the surroundings 
where people work, leading to trust, privacy, and identity. Examples of 
pervasive computing applications include smart homes with connected 
appliances, wearable devices that monitor health and fitness, smart 
cities with sensor networks for traffic management, and industrial 
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applications that utilize the Internet of Things (IoT) for monitoring and 
control. Generally, the continuous interaction of interconnected devices 
in pervasive computing often results in time series data, which captures 
the evolution of various parameters over time.

For instance, medical sensors, such as electrocardiograms (ECG) and 
electroencephalograms (EEG), generate time series data that contain 
critical diagnostic information, which deep learning can use to de-
tect anomalies, predict diseases, and classify medical conditions with 
improved accuracy. Furthermore, devices such as accelerometers, mag-
netometers and gyroscopes, among others, can be used to capture 
human activity signals, which are often represented as time series 
of state changes (Ige and Mohd Noor, 2022). In traditional machine 
learning, features such as mean, variance, and others are manually 
extracted from times series of state changes before human activity 
classification. However, deep learning models automatically extract 
features (Mohd Noor, 2021). Furthermore, in other fields such as 
finance, which entail time series data, deep learning has been instru-
mental in stock price prediction (Singh and Srivastava, 2017), fraud 
detection (Zhang et al., 2021), and algorithmic trading (Lei et al., 
2020), among others. Generally, deep learning networks excel at cap-
turing intricate temporal relationships within time-series data, enabling 
more precise predictions and improved decision-making. Based on this, 
several deep learning models have been employed for feature learning 
across various time series and pervasive computing domains.

4.3.1. Human activity recognition
Human activity recognition (HAR) finds application across various 

domains including intelligent video surveillance, environmental home 
monitoring, video storage and retrieval, intelligent human–machine 
interfaces, and identity recognition, among many others. It includes 
various research fields, including the detection of humans in video, 
estimating human poses, tracking humans, and analyzing and under-
standing time series data (Zhang et al., 2019). Despite the advance-
ments in vision-based HAR, there exist inherent limitations. Generally, 
vision-based approaches heavily rely on camera systems, which may 
have restricted views or be affected by lighting conditions, occlusions, 
and complex backgrounds (Ige and Mohd Noor, 2022). Additionally, 
vision-based HAR struggles with identifying actions that occur beyond 
the range of the camera or actions that are visually similar.

Wearable sensors offer a promising alternative to overcome these 
limitations. By directly capturing data from the individual, wearable 
sensors provide more comprehensive and accurate information about 
human activities. The signals obtained from wearable sensors typi-
cally represent time series data reflecting state changes in activities. 
Deep learning models can effectively learn from these signals, allowing 
for robust and accurate recognition of human activities. Moreover, 
wearable sensors offer the advantage of mobility, enabling activity 
recognition in various environments and situations where vision-based 
systems may be impractical or ineffective (Dang et al., 2020). Gener-
ally, the time series nature of signals from wearable sensors presents an 
excellent opportunity for deep learning models to excel in recognizing 
human activities with high accuracy and reliability.

Several researchers have proposed the use of CNN, RNN, and Hybrid 
models for deep learning-based feature learning in wearable sensor 
HAR. For instance, using two-dimensional CNN (Conv2D), several re-
searchers, as seen in Gao et al. (2021), Gupta (2021) and Erdas and 
Guney (2021), among others, have developed deep learning models 
for wearable sensor HAR, despite the time series nature of the data. 
This is often done by treating the time series signals from wearable 
sensors as 2D images by reshaping them appropriately. To achieve this, 
researchers often organize each time series signal into a matrix format, 
with time along one axis and sensor dimensions along the other, before 
creating a pseudo-image representation, which allows the matrix to 
be fed into Conv2D layers for feature extraction. Conv2D layers excel 
at capturing spatial patterns and relationships within images, and by 
treating the time series data as images, these layers can learn relevant 
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Table 8
Summary of state-of-the-art text generation.
 Ref. Description Results (Datasets and Metrics)  
 Ma et al. (2021) The paper proposed a text summarization model that integrates neural 

topic model with BERT to guide the text summarization based on inferred 
topics. It leverages transformers for long-term dependencies and combines 
LSTM layers with a gated network to enhance extractive and abstractive 
summarization of social texts

CNN/Daily Mail
Rouge-1: 43.58, Rouge-2: 20.45, Rouge-L: 34.60
Xsum
Rouge-1: 39.90, Rouge-2: 17.48, Rouge-L: 29.85

 

 Li et al. (2023) This study proposed FA-GAN featuring BERT for contextual representation, 
a category encoder for embedding categorical information, and an RMC 
decoder for generating diverse texts, while the discriminator ensures 
category consistency

MR-10
BLEU-2: 0.560
MR-20
BLEU-2: 0.674
AM-30
BLEU-2: 0.748

 

 Kwon et al. (2024) This study proposed a multi-class conditioned text generation model, 
combining a transformer-based decoder with an adversarial module, style 
attention, and a generation module to produce stylistically diverse text

Amazon (neg→pos)
self-BLEU: 0.257, S-ACC: 0.375 
Amazon (pos→neg)
self-BLEU: 0.096, S-ACC: 0.191 
YELP (neg→pos)
self-BLEU: 0.257, S-ACC: 0.198
YELP (pos→neg)
self-BLEU: 0.081, S-ACC: 0.207
*S-ACC (style accuracy)

 

 Xie et al. (2022) The paper proposes a knowledge-based summarization model that 
integrates medical knowledge into the pretrained models using a 
lightweight knowledge adapter. It employs generative and discriminative 
training to predict and reconstruct PICO elements, enhancing 
domain-specific text summarization

CORD-19
Rouge-1: 32.04, Rouge-2: 12.61, Rouge-L: 29.10
PubMed-Long
Rouge-1: 36.39, Rouge-2: 16.27, Rouge-L: 33.28

 

 Hajipoor et al. (2025) This study proposed GPTGAN, an approach that enhances adversarial text 
generation using a GPT model as a mentor to the GAN model and 
employing a multiscale discriminator framework to balance text quality 
and diversity

MSCOCO
BLEU: 98.7
WMTNews
BLEU: 93.4
Persian COCO
BLEU: 97.9

 

spatial features that contribute to activity recognition. The convolution 
operation performed by Conv2D filters across both the time and sensor 
dimensions, allowing the network to identify patterns and features that 
may be indicative of specific activities.

Even though Conv2D can effectively capture spatial dependencies 
within the data, it often struggles to capture temporal dependencies 
inherent in time series data. Since Conv2D processes data in a grid-like 
fashion, it does not fully leverage the sequential nature of the time se-
ries, potentially leading to less effective feature extraction for wearable 
sensor HAR tasks. For this reason, recent HAR architectures have lever-
aged one-dimensional CNN (Conv1D) and other RNNs for automatic 
feature extraction. Conv1D layers are specifically designed to capture 
temporal dependencies within sequential data. They operate directly 
on the time series data without reshaping it into a 2D format, allowing 
them to capture temporal patterns more effectively. Conv1D layers are 
better suited for extracting features from time series data, making them 
a more natural choice for wearable sensor HAR (Mohd Noor, 2021).

For instance, Ragab et al. (2020) proposed a random search Conv1D 
model, and evaluated the performance of the model on UCI-HAR 
dataset. The result showed that the model achieved a recognition accu-
racy of 95.40% when classifying the six activities in the dataset. How-
ever, the model exhibited extended training times due to the dynamic 
nature of some activities within the dataset. To address this, Banjarey 
et al. (2022) proposed the use of varying kernel sizes in Conv1D layers 
to recognize various activities, including sitting, standing, walking, 
sleeping, reading, and tilting. Furthermore, a few Conv1D layers were 
stacked to streamline the time optimization process for training the 
neural network. In Baraka and Mohd Noor (2023), a signal segmen-
tation method is proposed based on similarity between two subsequent 
windows. The method can not only achieve more accurate segmen-
tation, but also distinguish between transitional and non-transitional 
windows. Based on the distinction, two deep learning models with 
convolutional and fully connected layers are trained: one for transi-
tional activities and the other for non-transitional activities. In Baraka 
and Mohd Noor (2024), signal segmentation is treated as a binary 
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classification task, distinguishing windows as either transitional or non-
transitional. To this end, a deep learning model with parallel Conv1D 
pipelines is proposed to capture temporal dependencies within the win-
dow sequence. Furthermore, some researchers have proposed models 
that combine machine learning algorithms with Conv1D in HAR, as 
seen in Shuvo et al. (2020). Their work presented a two-stage learning 
process to improve HAR by classifying activities into static and dynamic 
using Random Forest, before using Support Vector Machine to identify 
each static activity, and Conv1D to recognize dynamic activities. The 
result shows that the method achieved an accuracy of 97.71% on the 
UCI-HAR dataset.

Following these advancements, several researchers have further 
explored Conv1D architectures with various modifications, to enhance 
feature learning in activity recognition systems. For example, Han 
et al. (2022) developed a two-stream CNN architecture as a plug-and-
play module to encode contextual information of sensor time series 
from different receptive field sizes. The module was integrated into 
existing deep models for HAR at no extra computation cost. Experi-
ments on OPPORTUNITY, PAMAP2, UCI-HAR and USC-HAD datasets 
show that the module improved feature learning capabilities. A similar 
research is reported in Ige and Noor (2023) proposed the WSense 
module to address the issue of differences in the quality of features 
learnt, regardless of the size of the sliding window segmentation, and 
experimented on PAMAP2 and WISDM datasets. The results show that 
by plugging the WSense module into Conv1D architectures, improved 
activity features can be learned from wearable sensor data for human 
activity recognition.

Hybrid Models: Researchers have also proposed the use of stan-
dalone RNNs in HAR, and a hybrid of Conv1D architectures with RNNs 
such as LSTMs (Deep and Zheng, 2019), BiLSTMs (Luwe et al., 2022; 
Shi et al., 2023), GRUs (Dua et al., 2023) and BiGRUs (Imran et al., 
2024) to fully harness the feature learning capabilities of both CNN and 
RNNs. For instance, Nafea et al. (2021), leveraged Bi-LSTM and Conv1D 
with increasing kernel sizes to learn features at various resolutions. 
Human activity features were extracted using the stacked convolutional 
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layers with a Bi-LSTM layer, before including a flattening layer and a 
fully connected layer for subsequent classification. However, the model 
had issues extracting quality features of dynamic activities compared 
to static activities. To address such issues, some research works have 
incorporated attention mechanisms in Conv1D-based architectures to 
improve feature learning of dynamic and complex activities from time 
series signals obtained from wearable sensors. For example, Khan and 
Ahmad (2021) designed three lightweight convolutional heads, with 
each specialized in feature extraction from wearable sensor data. Each 
head comprised stacked layers of Conv1Ds, along with embedded atten-
tion mechanisms to augment feature learning as shown in Fig.  30. The 
results demonstrated that integrating multiple 1D-CNN heads with SE 
attention can enhance feature learning for Human Activity Recognition.

Ige and Mohd Noor (2023) designed three feature learning
pipelines, each pipeline consisting of two concurrent layers of Conv1D 
and LSTM with maximum pooling, which are then concatenated and 
processed using a channel-wise attention mechanism to enhance feature 
learning. In Gao et al. (2021), a sequential channel-temporal atten-
tion is proposed for multi-modal activity recognition. The channel 
attention is similar to SE attention, but with average pooling and 
maximum pooling pipelines to squeeze to temporal dimension. The 
pooled features are then combined through addition operation. As for 
the temporal attention, average pooling and maximum pooling are 
applied along the channel dimension, producing two pooled features 
which are then combined through concatenation. The attention module 
is incorporated into the residual blocks of ResNet-like model to improve 
feature extraction. Similar work is reported in Agac and Incel (2024) 
whereby a hybrid sequential channel-spatial attention is proposed for a 
lightweight activity recognition model. The lightweight model consists 
of four convolutional blocks integrated with the attention module 
and two LSTM layers. Although the proposed attentions have shown 
a strong potential in improving model performance, their sequential 
processing inherently prioritize one of the feature map dimensions, 
impeding the model’s ability to capture holistic feature representations. 
In Tang et al. (2022), a triple cross-domain attention is proposed 
to blend three attention branches to improve feature extraction in 
HAR. For each attention branch, z-pooling (Misra et al., 2020) and 
convolution operations are applied along the corresponding dimension 
to generate the attention weights. Then, the feature maps are combined 
via average operation. The model consists of three residual blocks 
where each block is integrated with the attention module. These diverse 
modifications and adaptations showcase the versatility and potential of 
deep learning models in achieving state-of-the-art in HAR systems.

Transformers: Transformers have been employed in human ac-
tivity recognition to capture long-range dependencies in sensor data, 
enabling more accurate activity classification. In Chen et al. (2022), 
a transformer-based model is enhanced by integrating a bidirectional 
GRU and a linear fully connected layer into each encoder block. The 
decoder is reduced to a fully connected layer with softmax function. 
This hybrid model leverages the transformer’s ability to capture long-
range dependencies in sensor data and the bidirectional GRU’s strength 
in modeling temporal sequences, enhancing the model performance 
in classifying complex and collaborative activities. Similar work is 
reported in Sun et al. (2024) whereby the encoder blocks of the 
transformer are integrated with 1D convolutional layers instead of 
fully connected layers, enabling the model to extract local features. 
Furthermore, self-supervised contrastive learning is employed to learn 
from unlabeled data before the model is fine-tuned using a smaller 
dataset. Although transformer-based models have shown remarkable 
performance, they suffer from high computational cost and memory 
requirements, making them less suitable for real-time or resource-
constrained activity recognition. A study was conducted to determine 
the applicability of transformer models on a low-power ESP32 micro-
controller (Lattanzi et al., 2025). The study concludes that transformer 
models are not suitable for tiny devices. Furthermore, the results show 
that a tiny transformer model with two encoder blocks achieved lower 
25 
accuracy compared to the standard LSTM model, with a difference 
up to 14%. However, transformer models run 3x faster than LSTM, 
making them a viable option provided the architecture of transformers 
is optimized for low-power platforms.

Generative Models: A reliable deep learning model requires a 
large amount of training data to learn the underlying patterns of the 
data. However, in HAR, data collection is expensive, and the available 
datasets are often limited in the number of samples. To overcome 
this limitation, researchers employ GAN models to generate synthetic 
data, thus augmenting the training set. In Chan and Noor (2021), 
a conditional GAN is proposed to generate realistic sensor data of 
different activities for human activity classification. The generator 
consists of four 1D convolutional and maximum pooling blocks fol-
lowed by two layers of LSTM and fully connected layers, while the 
discriminator is a standard CNN model. An enhanced conditional GAN 
is proposed to improve synthetic data generation for HAR (Jimale 
and Mohd Noor, 2022). This architecture integrates 1D convolutional 
layers with multiple fully connected networks at the generator’s input 
and discriminator’s output, aiming to produce higher-quality synthetic 
samples compared to existing CGAN models. Similar work is reported 
in Lupión et al. (2024), where the conditional Wasserstein GAN is 
employed to generate synthetic data for HAR. 

In Kia et al. (2024), sensor data is transformed into its frequency 
spectrum, forming an RGB-based feature space for human activity 
classification. Then, BiGAN is employed to generate synthetic frequency 
spectrum images to increase minority sample classes, thus diversifying 
the training set. The generator and discriminator of the proposed 
BiGAN are built using 2D convolutional and fully connected layers. 
In Mohammadzadeh et al. (2025), a conditional GAN is employed to 
generate synthetic sensor data for therapeutic activity recognition. The 
generator utilizes Inception-like modules and transposed convolutional 
layers, while the discriminator consists of two classification pipelines: 
one classifies raw signals and the other pipeline classifies the Fourier-
transformed signal (frequency spectrum images). Both predictions are 
averaged to obtain the final prediction. Table  9 lists the summary of 
state-of-the-art human activity recognition.

4.3.2. Speech recognition
Speech, as the primary mode of human communication, has capti-

vated researchers for over five decades, especially since the inception of 
AI (Nassif et al., 2019). From the earliest endeavors to understand and 
replicate the complexities of human speech, to contemporary advance-
ments leveraging cutting-edge technologies, the quest for accurate 
and efficient speech recognition systems has been relentless. In recent 
years, the emergence of deep learning techniques has revolutionized 
the speech recognition field. Deep learning has demonstrated unpar-
alleled success in processing and extracting intricate patterns from 
vast amount of data. When applied to the realm of speech recogni-
tion, deep learning have surpassed traditional approaches by learning 
intricate features directly from raw audio signals, circumventing the 
need for handcrafted features and complex preprocessing pipelines. 
This paradigm shift has significantly advanced the state-of-the-art in 
speech recognition, enabling systems to achieve unprecedented levels 
of accuracy and robustness across various languages, accents, and en-
vironmental conditions. Generally, deep learning has been extended to 
other essential applications of speech recognition, such as speaker iden-
tification (Tirumala and Shahamiri, 2016; Ye and Yang, 2021), emotion 
recognition (Khalil et al., 2019), language identification (Singh et al., 
2021), accent recognition (Jiao et al., 2016), age recognition (Sánchez-
Hevia et al., 2022) and gender recognition (Alnuaim et al., 2022), 
among many others.

Prior to the adoption of deep learning in speech recognition, the 
foundation of traditional speech recognition systems was the use of 
Gaussian Mixture Models (GMMs), which are often combined with 
Hidden Markov Models (HMMs) to represent speech signals (Srivastava 
and Pandey, 2022). This is because a speech signal can be thought of as 
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Fig. 30. The architecture of multi-head CNN model (Khan and Ahmad, 2021).
Table 9
Summary of state-of-the-art human activity recognition.
 Ref. Description Results (Datasets and metrics)  
 Dua et al. (2023) This study proposed an Inception inspired model, combining convolutional layers 

with GRU. The convolutional blocks use multiple-sized filters to extract 
multiscale feature representations

MHEALTH
Accuracy: 99.25%
PAMAP2
Accuracy: 97.64%

 

 Ige and Mohd Noor (2023) This study proposed a model with three parallel feature learning pipelines, each 
pipeline has two sub-feature learning pipelines consisting of convolutional layers 
and bidirectional LSTM, and channel-wise attention before the classifier

PAMAP2
Accuracy: 98.52%
WISDM
Accuracy: 97.90%

 

 Agac and Incel (2024) This study proposed A lightweight model consists four convolutional blocks 
integrated with a sequential channel-spatial module and two LSTM layers

PAMAP2
Accuracy: 98.52%
WISDM
Accuracy: 97.90%

 

 Sun et al. (2024) A modified transformer integrated with convolutional layer instead of fully 
connected layer

UCI-HAR
Accuracy: 95.49%
Skoda
Accuracy: 87.88%
Mhealth
Accuracy: 98.43%

 

 Lupión et al. (2024) This study employed a conditional Wasserstein GAN to generate synthetic human 
activity recognition accelerometry signals

Local Ulster University dataset
Accuracy: 0.7453

 

 Kia et al. (2024) This study converted sensor data into its frequency spectrum to create an 
RGB-based feature space, employed BiGAN to generate synthetic frequency 
spectrum images to balance minority classes, and used 2D convolutional and fully 
connected layers in the generator and discriminator

Up-Fall
Accuracy: 99.1%
Opportunity
Accuracy: 86.8%
WISDM
Accuracy: 99.12%

 

 Mohammadzadeh et al. (2025) This study employed a conditional GAN to generate synthetic sensor data for 
therapeutic activity recognition which has Inception-like generator and a 
discriminator with two classification pipelines, one for raw signals and the other 
for Fourier-transformed signals

Local Sharif University of Technology 
dataset 
Avg. F1-score: 0.897

 

a short-term stationary signal. The spectral representation of the sound 
wave is modeled by each HMM using a mixture of Gaussian. However, 
they are considered statistically inefficient for modeling non-linear or 
near non-linear functions (Padmanabhan and Premkumar, 2015; Nassif 
et al., 2019). This is because HMMs rely on a set of predefined states 
and transition probabilities, making assumptions about the linearity 
and stationarity of the underlying data. While suitable for modeling 
certain aspects of speech, HMMs often fall short when tasked with rep-
resenting the intricate nonlinearities and variability present in speech 
signals. Speech, by nature, exhibits nonlinear and dynamic characteris-
tics, with features such as intonation, rhythm, and phonetic variations 
challenging the simplistic assumptions of traditional statistical models 
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like HMMs. In other words, GMM-HMM approach had limitations in 
capturing complex acoustic patterns and long-term dependencies in 
speech (Mukhamadiyev et al., 2022).

Sequence-to-Sequence Models: In recent times, CNN and RNNs 
have been leveraged for automatic speech recognition in order to 
consider a longer or variable temporal window for context information 
extraction (Lu et al., 2020). Generally, CNNs are well-suited for cap-
turing local patterns and hierarchical features in data, making them 
effective for modeling acoustic features in speech. By directly learning 
features from raw speech signals, CNNs bypassed the need for hand-
crafted features used in traditional GMM-HMM systems. Additionally, 
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CNNs can capture long-range dependencies in the data, which is cru-
cial for understanding the context of speech. Likewise, the RNNs are 
suitable choice for exploring extended temporal context information in 
one processing level for feature extraction and modeling.

Based on this, several researchers have proposed the use of both 
CNN and variants of RNNs for automatic speech recognition and for 
other speech related tasks. For instance, Hema and Garcia Marquez 
(2023), used CNN to classify speech emotions and benchmarked on a 
dataset consisting of seven classes (anger, disgust, fear, happiness, neu-
tral, sadness, and surprise). However, CNNs lack the ability to model 
temporal dependencies explicitly. In speech recognition, understanding 
the temporal context of speech is essential for accurate transcription. 
Furthermore, speech signals are inherently sequential, and information 
from previous time steps is crucial for understanding the current speech 
segment. CNNs, by design, do not inherently capture this sequential 
nature. For this reason, variants of RNNs have been leveraged to collect 
extended contexts in speeches. This is because RNNs are designed 
to model sequential data by maintaining hidden states that capture 
information from previous time steps. This allows them to capture tem-
poral dependencies effectively, making them well-suited for ASR tasks. 
In Shewalkar et al. (2019), the authors evaluated the performance of 
RNN, LSTM, and GRU on a popular benchmark speech dataset (ED-
LIUM). The results show that LSTM achieved the best word error rate, 
while the GRU optimization was faster and achieved word error rate 
close to that of LSTM.

However, RNN architectures process input sequences sequentially, 
which limits their ability to capture global context information effec-
tively. As a result, they may struggle to understand the entire context 
of a spoken utterance, leading to lower transcription accuracy, par-
ticularly in tasks requiring understanding beyond local dependencies. 
Furthermore, most CNN and RNN automatic speech recognition systems 
consist of separate acoustic, pronunciation, and language modeling 
components that are trained independently. Usually, the acoustic model 
bootstraps from an existing model that is used for alignment to train 
it to recognize context dependent (CD) states or phonemes. The pro-
nunciation model, curated by expert linguists, maps the sequences 
of phonemes produced by the acoustic model into word sequences. 
For this reason, Sequence-to-Sequence models are being proposed in 
automatic speech recognition to train the acoustic, pronunciation, and 
language modeling components jointly in a single system (Prabhavalkar 
et al., 2017). Sequence-to-Sequence models in automatic speech recog-
nition are a class of models that aim to directly transcribe an in-
put sequence of acoustic features such as speech spectrograms or 
Mel-frequency cepstral coefficients into a sequence of characters or 
words representing the recognized speech. There have been various 
sequence-to-sequence models explored in the literature, including Re-
current Neural Network Transducer (RNN-T) (Graves, 2012), Listen, 
Attend and Spell (LAS) (Chan et al., 2015), Neural Transducer (Jaitly 
et al., 2016), Monotonic Alignments (Raffel et al., 2017) and Recurrent 
Neural Aligner (RNA) (Sak et al., 2017).

As shown in Fig.  31, the encoder component takes the input se-
quence of acoustic features and processes it to create a fixed-
dimensional representation, often called the context vector. This rep-
resentation captures the essential information from the input sequence 
and serves as the basis for generating the output sequence. The de-
coder component takes the context vector produced by the encoder 
and generates the output sequence. In ASR, this output sequence 
consists of characters or words representing the recognized speech. 
The decoder is typically implemented as a recurrent neural network 
(RNN), such as a Long Short-Term Memory (LSTM) or Gated Recurrent 
Unit (GRU) network, or it could be a transformer-based architecture. 
During training, the model learns to map input sequences to their 
corresponding output sequences by minimizing a suitable loss function, 
such as cross-entropy loss. This is typically done using techniques like 
backpropagation through time (BPTT) or teacher forcing, where the 
model is trained to predict the next token in the output sequence given 
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Fig. 31. Sequence-to-sequence.

the previous tokens. Thereafter, the trained model is used to transcribe 
unseen speech input. The encoder processes the input sequence to 
produce the context vector, which is then fed into the decoder to 
generate the output sequence. In some cases, beam search (Szűcs and 
Huszti, 2019; Li et al., 2018) or other decoding strategies may be used 
to improve the quality of the generated output.

In Chiu et al. (2018), the authors explored various structural and 
optimization enhancements to their LAS Sequence to Sequence model, 
resulting in significant performance improvements. They introduce 
several structural enhancements, including the utilization of word piece 
models instead of graphemes and the incorporation of a multi-head 
attention architecture, which outperforms the commonly used single-
head attention mechanism. Additionally, they investigate optimization 
techniques such as synchronous training, scheduled sampling, label 
smoothing, and minimum word error rate optimization, all of which 
demonstrate improvements in accuracy. The authors presented exper-
imental results utilizing a unidirectional LSTM encoder for streaming 
recognition. On a 12,500-h voice search task, they observe a decrease in 
Word Error Rate (WER) from 9.2% to 5.6% with the proposed changes, 
while the best-performing conventional system achieves a WER of 
6.7%. Moreover, on a dictation task, their model achieves a WER of 
4.1%, compared to 5% for the conventional system. Similarly, the work 
of Prabhavalkar et al. (2017) investigated a number of sequence-to-
sequence methods in automatic speech recognition. These included the 
RNN transducer (RNN-T), attention-based models, a new model that 
augments the RNN-T with attention, and a Connectionist Temporal 
Classification (CTC) trained system that directly outputs grapheme se-
quences. According to their research, sequence-to-sequence approaches 
can compete on dictation test sets against state-of-the-art when trained 
on a large volume of training data.

Transformers: Transformers have become the basis of state-of-the-
art models in speech recognition. Wav2Vec 2.0 reads raw audio sig-
nals using multilayer convolutional encoder to generate latent speech 
representations (Baevski et al., 2020). The feature representation is 
subsequently fed to a transformer to capture the contextual infor-
mation in the data. The transformer uses a convolutional layer for 
the positional encoding. Furthermore, the authors introduced vector 
quantization technique to convert the feature encoder output to discrete 
codes which are then used for contrastive learning during pretraining. 
Whisper is a robust speech recognition model proposed by OpenAI, 
trained on 680,000 h of labeled audio data (Radford et al., 2022). Of 
these, 117,000 h cover 96 non-English languages and 125,000 h consist 
of non-English to English translation data. The model is based on 
encoder–decoder transformer architecture, where the input data is first 
processed using convolutional layers followed by the positional encod-
ing. Then, the input is fed into the encoder, which consists of a series 
of transformer blocks, each including multi-head self-attention mecha-
nisms. The encoder’s output is then fed into each decode transformer 
block to generate the final output. The decoder’s transformer blocks 
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consist of multi-head self-attention and cross attention mechanisms. 
Conformer is a Transformer-based encoder, combining self-attention 
with convolutional layers to better capture both global and local fea-
tures in speech signals (Gulati et al., 2020). The encoder provides 
a balance approach leveraging the strengths of convolution and self-
attention mechanism. Conformer is often used with CTC or RNN-T, or 
other decoding mechanisms.

Auto-regressive decoding in transformer-based models is computa-
tionally expensive, as it requires repeated processing of the complete 
encoded speech, resulting in slow operation. In Stooke et al. (2025), 
Aligner-Encoder, a transformer-based encoder is proposed that per-
form internal alignment between audio and text, eliminating the need 
for complex decoding steps and complex dynamic programming dur-
ing training. The approach simplifies the model architecture using 
a lightweight decoder without cross attention that processes embed-
ding frames sequentially until an end-of-message token is generated. 
In Zhang et al. (2025), the Spike Window Decoding (SWD) algorithm 
is introduced that leverages the spike property of CTC outputs where 
each spike represents a strong signal indicating the presence of a 
specific token. By focusing on these spikes within a fixed window, SWD 
reduces the complexity of decoding, enabling faster and more efficient 
processing. Although transformer-based models are highly effective, 
they often capture highly entangled feature representations, leading to 
a lack of clear interpretability. In Wang and hamme (2024), the authors 
proposed the Disentangled-Transformer to enhance the interpretability 
of transformer-based models. The transformer disentangles the internal 
representations into sub-embeddings based on the various temporal 
characteristics of the speech signals. To this end, the loss function 
is improved by introducing time-invariant regularization terms for 
each time frame. A state-of-the-art speech recognition model called 
Samba-ASR is proposed utilizing Mamba architecture that is based on 
state-space-models (Shakhadri et al., 2025). This approach overcomes 
the limitations of transformer-based models such as inability to han-
dle long-range dependencies and their quadratic scaling with input 
length, by efficiently capturing both local and global temporal depen-
dencies through state-space-dynamics. Table  10 lists the summary of 
state-of-the-art speech recognition applications.

4.3.3. Finance
Over the past few decades, computational intelligence in finance has 

been a hot issue in both academia and the financial sector (Ozbayoglu 
et al., 2020). Deep learning, especially RNN models have gained signif-
icant traction in the field of finance due to its ability to handle sequen-
tial data, since financial data often exhibit sequential dependencies, 
such as time series data for stock prices or historical transaction data. 
Within the financial industry, researchers have developed deep learning 
models for stock market forecasting (Singh and Srivastava, 2017), 
algorithmic trading (Lei et al., 2020), credit risk assessment (Shen et al., 
2021), portfolio allocation (Wang et al., 2020), asset pricing (Chen 
et al., 2024), and derivatives markets (Ahnouch et al., 2023), among 
others and these models are intended to offer real-time operational 
solutions. In exchange rate prediction, Sun et al. (2020) developed an 
ensemble deep learning technique known as LSTM-B by combining a 
bagging ensemble learning algorithm with a long-short term memory 
(LSTM) neural network to increase the profitability of exchange rate 
trading and produce accurate exchange rate forecasting results. In com-
parison to previous methodologies, the authors’ estimates proved to be 
more accurate when they looked at the potential financial profitability 
of exchange rates between the US dollar (USD) and four other major 
currencies: GBP, JPY, EUR, and CNY.

The authors in Abedin et al. (2021) proposed a Bi-LSTM-BR tech-
nique, which combined Bagging Ridge (BR) regression with Bi-LSTM 
as base regressors. The pre-COVID-19 and COVID-19 exchange rates 
of 21 currencies against the USD were predicted using the Bi-LSTM 
BR, and experiments showed that the proposed method outperformed 
ML algorithms such as DT and SVM. However, exchange rate data can 
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be noisy and subject to non-stationarity, which can pose challenges 
for predictive modeling. While bagging techniques can help mitigate 
the effects of noise to some extent, they may struggle to capture 
long-term trends or sudden shifts in the data distribution, leading to 
suboptimal performance. To address this, Wang et al. (2023) presented 
an approach for one-day ahead of time exchange rate prediction that 
concurrently considers both supervised and unsupervised deep repre-
sentation features to enhance Random Subspace. Two crucial phases in 
the SUDF-RS technique are feature extraction and model building. First, 
LSTM and deep belief networks, respectively, extract the supervised 
and unsupervised deep representation features. To produce high-quality 
feature subsets, an enhanced random subspace approach was created 
that integrates a random forest-based feature weighting mechanism. 
Then, the matching base learner is trained using each feature subset, 
and the final outputs are generated by averaging the outcomes of 
each base learner. Experiments on EUR/USD, GBP/USD and USD/JPY 
showed that improved accuracy was achieved using the model.

In stock market prediction, several deep learning architectures have 
been proposed in the literature. For instance, Nikou et al. (2019), 
conducted a comparative study between the ANN, SVR, RF and an 
LSTM model. As compared to the other models discussed in the study, 
the LSTM model outperformed the others in predicting the closing 
prices of iShares MSCI United Kingdom. Similarly, using stock market 
historical data and financial news, Cai et al. (2018) used CNN and 
LSTM forecasting methods to generate seven prediction models. The 
seven models were then combined into a single ensemble model in 
accordance with the ensemble learning approach to create an aggre-
gated model. However, the accuracy of all the models’ predictions was 
low. Gudelek et al. (2017) proposed a CNN model which used a sliding 
window technique and created pictures by capturing daily snapshots 
within the window’s bounds. With 72% accuracy, the model was able 
to forecast the prices for the following day and was able to generate 
5 times the starting capital. In Eapen et al. (2019), a CNN and Bi-
LSTM model with numerous pipelines was proposed, utilizing an SVM 
regressor model on the S&P 500 Grand Challenge dataset, and results 
showed enhanced prediction performance by over a factor of 6% com-
pared to baseline models. As presented, deep learning has undeniably 
achieved state-of-the-art performance across various domains within 
finance. In Chen et al. (2024), a multi-modal deep learning model is 
proposed for stock market trend prediction by integrating daily stock 
prices, technical indicators and sentiment from daily news headlines. 
The model architecture consists of BERT-based branch fine-tuned on 
financial news to capture textual sentiment and an LSTM branch that 
captures temporal patterns in the time series data, including stock 
prices and technical indicators. Both feature representations are com-
bined through concatenation and then passed to a fully connected layer 
for predictions.

A study was conducted to analyze the performance of Prophet, 
LSTM and Transformer. Prophet is a parametric, additive regression 
model based on time series decomposition (Mozaffari and Zhang, 
2024). The LSTM model consists of two hidden layers, with a hidden 
size of 64 and a linear fully connected layer is used to generate 
the output. The Transformer model follows the original transformer 
architecture. The results show that transformer outperformed LSTM 
and Prophet in terms of forecasting accuracy, particularly for datasets 
with complex temporal dependencies. However, transformer models 
have high memory usage and quadratic complexity due to self-attention 
mechanism, which makes them inefficient for very long sequence 
time-series forecasting. To overcome the limitations, a StockFormer 
is proposed which is based on Informer (Li et al., 2025). Informer is 
a transformer that was designed for time-series forecasting, utilizing 
the ProbSparse self-attention mechanism which attends to only the 
most important queries for each key, reducing the computational 
complexity (Zhou et al., 2021). Furthermore, self-attention distilling 
technique is introduced to reduce redundancy and highlighting crucial 
information in the feature maps, helping the model to focus more on 
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Table 10
Summary of state-of-the-art speech recognition.
 Ref. Description Results (Datasets and metrics)  
 Radford et al. (2022) This study proposed Whisper an automatic speech recognition (ASR) system that 

transcribes and translates spoken language using a robust deep learning model 
trained on diverse multilingual and multitask datasets

Various datasets (first three datasets only)
LibriSpeech Clean
WER: 2.7 
Artie 
WER: 6.2
Common Voice
WER: 9.0

 

 Stooke et al. (2025) This study introduced Aligner-Encoder, a transformer-based automatic speech 
recognition model that internally aligns audio-text representations before 
decoding, enabling a simpler and more efficient architecture trained with 
frame-wise cross-entropy loss

LibriSpeech-960H
WER: 2.2 
Voice Search
WER: 3.7
YouTube videos
WER: 7.3

 

 Zhang et al. (2025) An algorithm that leverages spike property of CTC outputs to reduce the 
complexity of WFST decoding process

AISHELL-1
CER: 3.89
In House
CER: 2.09

 

 Wang and hamme (2024) A transformer-based model architecture designed to disentangle internal 
representations and enhance model explainability.

LibriSpeech-100H
DER: 8.1
LibriMix 1
DER: 5.7
LibriMix 2
DER: 6.9
LibriMix 3
DER: 2.5
LibriMix 4
DER: 5.6

 

 Shakhadri et al. (2025) A speech recognition model based on state-space-models GigaSpeech
WER: 9.12
LibriSpeech Clean
WER: 1.17
LS Other
WER: 2.48
SPGISpeech
WER: 1.84

 

the relevant parts of the input sequence. In Berti and Kasneci (2025), 
a transformer-based model is proposed for stock trend prediction using 
limit order book data (LOB). The model consists of a series of trans-
former LOB (TLOB) blocks which leverage dual attention mechanisms 
to capture both spatial and temporal dependencies, allowing the model 
to adaptively focus on the market microstructure of the input data. 
Furthermore, a multilayer of perceptron LOB (MPLOB) is introduced, 
comprising two blocks of two fully connected layers which operate 
along the feature and temporal dimensions. Table  11 lists the summary 
of state-of-the-art finance applications.

4.3.4. Electrocardiogram (ECG) classification
Disorders pertaining to the heart or blood vessels are collectively 

referred to as Cardiovascular Diseases (CVD) (Liu et al., 2021). Ac-
cording to the American Heart Association’s 2023 statistics, CVD has 
emerged as the leading cause of death worldwide. In 2020, 19.05 
million deaths were recorded from CVD globally, which signifies an 
increase of 18.71% from 2010, and it is believed that this number will 
rise to 23.6 million by 2030 (Tsao et al., 2023). Blood clots and vascular 
blockages caused by CVDs can cause myocardial infarction, stroke, or 
even death (Liu et al., 2021). Generally, early diagnosis has been shown 
to reduce the mortality rate of CVDs, and Electrocardiogram (ECG) 
signals play a crucial role in diagnosing various cardiac abnormalities 
and monitoring heart health. However, ECG signal has characteristics 
of high noise and high complexity, making it time-consuming and 
labor-intensive to identify certain diseases using traditional methods. 
The traditional approach is tedious and requires the expertise of a 
medical specialist. Over the past decades, the task of Long-term ECG 
recording classification has been significantly facilitated for cardiolo-
gists through the adoption of computerized ECG recognition practices. 
Throughout this period, feature extraction methods have predomi-
nantly relied on manual techniques, encompassing diverse approaches 
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such as wave shape functions (Llamedo and Martínez, 2011), wavelet-
based features (Mathews et al., 2018), ECG morphology (zhu wenliang 
wenliang et al., 2019), hermite polynomials (Desai et al., 2021), and 
Karhunen–Loeve expansion of ECG morphology (Crippa et al., 2015), 
among others. These extracted features are subsequently subjected to 
classification using various machine learning algorithms.

More recently, the advent of deep learning has revolutionized the 
field by enabling automatic feature learning directly from ECG signals. 
This advancement holds significant promise in the realm of automated 
ECG classification, offering clinicians a tool for swift and accurate 
diagnosis. Based on this, several deep learning architectures have been 
proposed for feature learning of ECG signals. For instance, Acharya 
et al. (2017) developed a 9-layer CNN model to automatically identify 
five categories of heartbeats in ECG signals. A similar model was 
also developed in Baloglu et al. (2019). However, ECG signals often 
vary significantly in length, as they may contain different numbers of 
heartbeats. CNNs typically require fixed-length inputs, which may ne-
cessitate preprocessing steps such as padding or truncation, potentially 
losing important temporal information. For this reason, several archi-
tectures have leveraged RNN in ECG classification, as seen in Singh 
et al. (2018), Prabhakararao and Dandapat (2020) and Wang et al. 
(2023), among others. While RNNs are capable of handling sequential 
data, they also have limitations in capturing local patterns or short-
term dependencies effectively. In ECG signals, local features such as 
specific waveforms or intervals can be crucial for classification. For 
this reason, recent works have proposed hybrid models which combine 
the strengths of both CNNs and RNNs to overcome some of these 
limitations (Sowmya and Jose, 2022).

Hybrid Models: The work of Rai and Chatterjee (2022) developed 
a hybrid CNN–LSTM network to evaluate the optimum performing 
model for myocardial infarction detection using ECG signals. The au-
thors then experimented on 123,998 ECG beats obtained from the 
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Table 11
Summary of state-of-the-art finance applications.
 Ref. Description Results (Datasets and metrics)  
 Wang et al. (2023) This study introduces SUDF-RS technique for one-day-ahead exchange rate 

prediction by combining supervised and unsupervised deep representation 
features with an enhanced random subspace approach, leveraging LSTM 
and deep belief networks for feature extraction and using a random 
forest-based weighting mechanism to improve prediction accuracy

Data collected from investing.com
RMSE: 0.448 (EUR/USD), 0.676 (GBP/USD), 0.374 
(USD/JPY)

 

 Chen et al. (2024) A multi-modal deep learning model integrates stock prices, technical 
indicators, and news sentiment using a BERT-based branch for textual 
analysis and an LSTM branch for temporal patterns, combining their 
features for stock market trend prediction

Data collected using Yahoo Finance and EODHD API
F1-Score: 0.45 (ATVI), 0.51 (AAPL), 0.48 (AMT), 0.53 
(PLD), 0.50 (NDAQ), 0.45 (SCHW), 0.43 (BIO), 0.47 
(JNJ)

 

 Mozaffari and Zhang (2024) This study analyzes stock closing price prediction using LSTM, Prophet, 
and Transformer models

American Airlines Group Inc.
MSE: 0.0085 (Transformer), 0.1972 (LSTM), 16.9321 
(Prophet) 
Atlantic American-Life Insurance
MSE: 0.0118 (Transformer), 0.0095 (LSTM), 17.8601 
(Prophet)

 

 Li et al. (2025) The study proposed a model based on Informer which utilizes ProbSparse 
self-attention and self-attention distilling to reduce the computation 
complexity

Combined data from Yahoo, alphavantage.co, 
alpaca.markets and polygon.io 
Percent profit: 1.7550

 

 Berti and Kasneci (2025) The study proposed a transformer-based model with dual attention 
mechanisms and multilayer of perceptrons for feature mixing along feature 
and temporal dimensions

FI-2010
F1-score: 92.81
TSLA 
F1-score: 60.50 
INTC 
F1-score: 80.15

 

PTB diagnostic database (PTBDB) and MIT-BIH arrhythmia database 
(MITDB), and the result showed that by combining the capabilities of 
both CNN and LSTM, improved classification accuracy can be achieved. 
Also, in Banerjee et al. (2020), a CNN architecture was developed to 
extract morphological features from ECG signals. For the purpose of 
determining the degree of heart rate variability, another composite 
structure was designed using LSTM and a collection of manually created 
statistical features. Following that, a hybrid CNN–LSTM architecture is 
built using the two independent biomarkers to classify cardiovascular 
artery diseases, and experiments were carried out on two distinct 
datasets. The first is a partly noisy in-house dataset collected using an 
inexpensive ECG sensor, and the other is a corpus taken from the MIMIC 
II waveform dataset. The hybrid model proposed in the work achieved 
an overall classification accuracy of 88% and 93%, respectively, which 
surpasses the performance of standalone architectures.

An automated diagnosis method based on Deep CNN and LSTM 
architecture was presented in Kusuma and Jothi (2022) to identify 
Congestive Heart Failure (CHF) from ECG signals. Specifically, CNN 
was used to extract deep features, and LSTM was employed to exploit 
the extracted features to achieve the CHF detection goal. The model 
was tested using real-time ECG signal datasets, and the results show 
that the AUC was 99.9%, the sensitivity was 99.31%, the specificity 
was 99.28%, the F-Score was 98.94%, and the accuracy was 99.52%. 
Similar work is reported in Alamatsaz et al. (2024) whereby CNN is 
combined with LSTM for ECG classification. The hybrid model consists 
of three blocks of convolutional and maximum pooling layers with 
dropout followed by an LSTM with drop. Furthermore, Shapley is 
utilized to determine the contribution of each ECG sample on the pre-
diction to improve model interpretability. However, since ECG signals 
can vary in length due to differences in recording durations or patient 
conditions. LSTMs are capable of handling variable-length sequences, 
but traditional CNNs typically require fixed-length inputs. Therefore, 
fusing these features effectively in a hybrid model can be challeng-
ing. Furthermore, Hybrid CNN-RNN models can be computationally 
intensive, especially when processing long ECG sequences or large 
datasets. For this reason, recent research works have proposed the 
use of attention mechanisms to reduce the computational burden by 
enabling the model to selectively attend to informative features, fo-
cusing computational resources where they are most needed. Likewise, 
attention mechanisms can enable the model to attend to informative 
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segments of the ECG signal, regardless of their length, allowing for 
more flexible processing of variable-length sequences.

Several researchers have leveraged attention mechanisms in stan-
dalone and hybrid architectures for improved performance. For in-
stance, in the work of Chen et al. (2022), CNN layers were used to 
extract main features, while LSTM and attention were included to 
enhance the model’s feature learning capabilities. Experiments on a 
12-lead KMUH ECG dataset showed that the model had high recogni-
tion rates in classifying normal and abnormal ECG signals, compared 
to hybrid models without attention mechanisms. Wang et al. (2021) 
presented a 33-layer CNN architecture with non-local convolutional 
block attention module (NCBAM). To extract the spatial and channel 
information, preprocessed ECG signals were first fed into the CNN 
architecture. A non-local attention further captured long-range de-
pendencies of representative features along spatial and channel axes. 
Similarly, a spatio-temporal attention-based convolutional recurrent 
neural network (STA-CRNN) was presented in Zhang et al. (2020) 
with the aim of concentrating on representative features in both the 
spatial and temporal dimensions. The CNN subnetwork, spatiotemporal 
attention modules, and RNN subnetwork formed the STA-CRNN and 
according to findings, the STA-CRNN model was able to classify eight 
different forms of arrhythmias and normal rhythm with an average F1 
score of 0.835. In Sun et al. (2024), the SE module is utilized in between 
convolutional layers and LSTM. This approach allows the model to 
focus on relevant channels before temporal dependencies are captured 
by the LSTM, improving the classification performance.

In Huang et al. (2024), a guided spatial attention mechanism is in-
troduced to incorporate domain knowledge into the model, enhancing 
ECG classification performance. The guided spatial attention mecha-
nism has an autoencoder-like structure, where the feature maps are 
downsampled by the encoder and upsampled by the decoder. Addi-
tionally, skip connections are employed to improve information flow 
between the encoder and decoder. Furthermore, an attention loss term, 
based on the attention weights is introduced to jointly train the guided 
attention mechanisms. In Aghaomidi and Wang (2024), ECG signals are 
classified into sleep stages using deep learning. The approach is divided 
into three stages. In the first stage, a deep learning model consisting of 
convolutional layers and liquid time-constant network (Hasani et al., 
2021) is employed to compute kurtosis and skewness of the ECG 
signals. In the second stage, a deep learning model with convolutional 
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Fig. 32. The architecture of CECG-GAN (Yang et al., 2024).
layers and SE attention is used to enhance the prediction of the minority 
sleep stage class. In the final stage, the outputs of the models are 
concatenated and classified into sleep stage categories. Combining hy-
brid deep learning models with attention mechanisms for ECG feature 
learning is a promising approach that has already shown potential in 
ECG feature learning, according to reviewed literature. Future research 
can further explore semi-supervised and self-supervised learning tech-
niques to leverage large amounts of unlabeled ECG data. This could 
involve pre-training models on large-scale unlabeled datasets using 
self-supervised learning objectives.

Generative Models: Deep learning models have been leveraged in 
the generation of synthetic ECG signals to augment real signals, as seen 
in Zhu et al. (2019) where a GAN model was developed to generate ECG 
signals that correspond with available clinical data. The GAN model 
used two layers of BiLSTM for the generator and CNN for the dis-
criminator, and trained using the 48 ECG recordings of different users 
from the MIT-BIH dataset. The authors then compared their model 
with a Recurrent neural network autoencoder (RNN-AE) model and a 
recurrent neural network variational autoencoder (RNN-VAE) model, 
and the results show that their model exhibited the fastest convergence 
of its loss function to zero. Similar work is reported in Yang et al. (2024) 
in which GAN and autoencoder are employed to generate ECG signals 
to address the issue of imbalanced dataset as shown in Fig.  32. The 
generator and encoder create synthetic and real low-dimensional ECG 
samples, respectively. The discriminator classifies the synthetic and real 
low-dimensional ECG samples as real or fake, while the decoder recon-
structs the ECG signals from the synthetic low-dimensional samples. 
This approach further refines data transformation and reconstruction 
quality, generating more realistic ECG signals. In Msigwa et al. (2024), 
cluster-based GAN is employed to improve the diversity and quality 
of the generated synthetic ECG signals. 𝐾-means algorithm is first 
employed to partition the ECG signals into 𝑘 distinct groups. Then, the 
GAN is trained using the cluster centroids as initial reference points 
to guide the GAN in generating synthetic signals. Table  12 lists the 
summary of state-of-the-art ECG classification.

4.3.5. Electroencephalography (EEG) classification
Three-dimensional scalp surface electrode readings provide a dy-

namic time series that is called Electroencephalogram (EEG) signal
(Schirrmeister et al., 2017). Brain waves obtained from an EEG can 
effectively depict both the psychological and pathological states of a 
human. The human brain is acknowledged to be a fascinating and in-
credibly complicated structure. Numerous brain signals, including func-
tional magnetic resonance imaging (fMRI), near-infrared spectroscopy 
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(NIRS), electroencephalograms (EEGs), and functional near-infrared 
spectroscopy (fNIR), among others have been collected and used to 
study the brain (Gao et al., 2021). Due to the EEG’s non-invasive, 
affordable, accessible, and excellent temporal resolution characteristics, 
it has become the most utilized approach. However, the signal-to-noise 
ratio of EEG signal is low, meaning that sources with no task-relevant 
information frequently have a stronger effect on the EEG signal than 
those that do. These characteristics often make end-to-end feature 
learning for EEG data substantially more challenging (Schirrmeister 
et al., 2017). Based on this, several methods have been leveraged 
for improved feature extraction in EEG signals across several domains 
including Motor imagery (Ang and Guan, 2017), anxiety disorder (Shen 
et al., 2022), epileptic seizure detection (Boonyakitanont et al., 2020), 
sleep pattern analysis and disorder detection (Sharma et al., 2021; 
Vaquerizo-Villar et al., 2023), and Alzheimer’s disease detection (Modir 
et al., 2023), and many others.

EEG Motor Imagery (MI) is a technique used to study brain activity 
associated with the imagination of movement. It involves recording 
electrical activity generated by the brain through electrodes placed on 
the scalp. MI tasks typically involve imagining performing a specific 
motor action, such as moving a hand or foot, without physically ex-
ecuting the movement, and has been leveraged in smart healthcare 
applications such as post-stroke rehabilitation and mobile assistive 
robots, among others (Altaheri et al., 2023). Prior to the advent of deep 
learning, motor imagery EEG data are passed through various steps 
before classification using traditional ML techniques. Pre-processing, 
feature extraction, and classification are the three primary stages that 
traditional approaches usually take while processing MI-EEG signals. 
Pre-processing includes a number of operations, including signal fil-
tering (choosing the most valuable frequency range for MI tasks), 
channel selection (identifying the most valuable EEG channels for MI 
tasks), signal normalization (normalizing each EEG channel around 
the time axis), and artifact removal (removing noise from MI-EEG 
signals). Independent component analysis (ICA) is the most often uti-
lized technique for removing artifacts (Brunner et al., 2007; Delorme 
et al., 2007; Jafarifarmand and Badamchizadeh, 2019). In contrast to 
the traditional approach, deep learning architectures can automatically 
extract complex features from raw MI-EEG data without the need for 
laborious feature extraction and pre-processing. Based on this, several 
deep learning architectures have been proposed for MI-EEG feature 
learning, as seen in Zhang et al. (2019), Kumar et al. (2016) and 
Tibrewal et al. (2022), among others. For instance Schirrmeister et al. 
(2017), categorized MI-EEG signals using three CNNs with varying 
architectures, and the number of convolutional layers varied from 
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Table 12
Summary of state-of-the-art ECG classification.
 Ref. Description Results (Datasets and metrics)  
 Sun et al. (2024) A hybrid model consists of three blocks of convolutional layer, SE module 

and an LSTM
MIT-BIH ECG
Accuracy: 98.5%

 

 Alamatsaz et al. (2024) A lightweight hybrid model consists of three blocks of convolutional and 
maximum pooling layers and an LSTM

MIT-BIH and LTAF
Accuracy: 98.24%

 

 Chen et al. (2022) A hybrid model consists of three convolutional pipelines with different kernel 
size, two LSTM layers and an attention module

KMUH
Accuracy: 96.02% 
CPSC-2018
Accuracy: 94.05%

 

 Huang et al. (2024) This study proposed a guided spatial attention mechanism to enhance ECG 
classification performance

CPSC2018 and PTB-XL Chapman Cinc2017
F1-score: 77.56% (STC), 88.53% (PC), 82.54% 
(WPW), 85.37% (AF)

 

 Aghaomidi and Wang (2024) A novel three-stage approach for sleep stage classification extracts statistical 
features using a Feature Imitating Network, enhances minority sleep stage 
detection, and integrates outputs for five-class classification

MIT-BIH Polysomnographic
Accuracy: 80.79%

 

 Yang et al. (2024) This study proposed a generative model by combining conditional GAN and 
autoencoder

CSPC2020 dataset
F1-score: 0.9823 (Normal), 0.9824 (Premature 
ventricular), 0.9825 (Premature Supraventricular)

 

 Msigwa et al. (2024) This study introduces a generative model by combining GAN and K-means MIT-BIH arrhythmia
Accuracy: 99.66%

 

two layers to a five-layer deep ConvNet to a thirty-one-layer residual 
network.

In Dai et al. (2019), the authors proposed an approach for classi-
fying MI-EEG signals which blend variational autoencoder with CNN 
architecture. The VAE decoder was used to fit the Gaussian distribution 
of EEG signals, and the time, frequency, and channel information from 
the EEG signal were combined to create a novel representation of 
input, and the proposed CNN-VAE method was optimized for the input. 
Experiments showed that by combining both deep learning architec-
tures, improved features were learnt, which led to a high classification 
performance on the BCI Competition IV dataset 2b. Li et al. (2017) 
employed optimal wavelet packet transform (OWPT) for the genera-
tion of feature vectors from MI-EEG signals. These vectors were then 
utilized to train an LSTM network, which demonstrated satisfactory 
performance on dataset III from the BCI Competition 2003. However, 
the model has an excessively intricate structure. To address this, Li 
et al. (2020) introduced a technique that merges continuous wavelet 
transform (CWT) with a simplified convolutional neural network to 
enhance the accuracy of recognizing MI-EEG signals. By employing 
CWT, MI-EEG signals were converted into time-frequency image rep-
resentations. Subsequently, these image representations were fed into 
the SCNN for feature extraction and classification. Experiments on 
the BCI Competition IV Dataset 2b demonstrate that, on average, the 
classification accuracy across nine subjects reached 83.2%. However, 
the computational complexity of the model was quite high, due to 
the processing of time-frequency image representations. The conversion 
of MI-EEG signals into time-frequency images using CWT requires 
significant computational resources.

The authors in Hwang et al. (2023) introduced a classification 
framework based on Long Short-Term Memory (LSTM) to improve the 
accuracy of classifying four-class motor imagery signals from EEG. The 
authors used sliding window technique to capture time-varying EEG 
signal data, and employed an overlapping-band-based Filter Bank Com-
mon Spatial Patterns (FBCSP) method to extract subject-specific spatial 
features. Experiments on the BCI Competition IV dataset 2a, showed 
that their model achieved an average accuracy of 97%, compared to 
existing methods. Also, in the classification of Alzheimer’s disease, Zhao 
and He (2015) employed a deep learning network to analyze EEG data. 
The deep learning model was evaluated on a dataset that consisted 
of fifteen (15) patients with clinically confirmed Alzheimer’s disease 
and fifteen (15) healthy individuals, and results showed that improved 
features were learnt and compared the results to the traditional meth-
ods. This has prompted the use of deep learning in Alzheimer’s disease 
detection, as seen in Xia et al. (2023), where the authors used CNN for 
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diagnosing Alzheimer’s Disease. To address challenges posed by limited 
data and overfitting in deep learning models designed for Alzheimer’s 
Disease detection, the authors explored the use of overlapping sliding 
windows to augment the EEG data collected from 100 subjects (com-
prising 49 AD patients, 37 mild cognitive impairment patients, and 14 
healthy controls subjects). After assembling the augmented dataset, a 
modified Deep Pyramid Convolutional Neural Network (DPCNN) was 
used to classify the enhanced EEG signals.

Hybrid Models: In Hermawan et al. (2024), the authors developed 
three deep learning architectures (CNN, LSTM, and hybrid CNN–LSTM), 
with each model chosen for its effectiveness in handling the intricate 
characteristics of EEG data for epilepsy detection. Each architecture 
offers distinct advantages, with CNN excelling in spatial feature ex-
traction, LSTM in capturing temporal dynamics, and the hybrid model 
combining these strengths. The CNN model, consisting of 31 layers, 
attained the highest accuracy, achieving 91% on the first benchmark 
dataset and 82% on the second dataset using a 30-s threshold, selected 
for its clinical significance. In the work of Abdulwahhab et al. (2024), 
EEG waves’ time-frequency image and raw EEG waves served as input 
elements for CNN and LSTM models. Two signal processing methods, 
namely Short-Time Fourier Transform (STFT) and CWT, were employed 
to generate spectrogram and scalogram images, sized at 77 × 75 
and 32 × 32, respectively. The experimental findings demonstrated 
detection accuracies of 99.57% and 99.26% for CNN inputs using 
CWT Scalograms on the Bonn University dataset and 99.57% and 
97.12% using STFT spectrograms on the CHB-MIT dataset. Similarly, 
in emotion recognition, several deep learning models have been lever-
aged with EEG signals. For instance, in Pandey and Seeja (2022), a 
subject-independent emotion recognition model was proposed, which 
utilizes Variational Mode Decomposition (VMD) for feature extraction 
and DNN as the classifier. Evaluation against the benchmark DEAP 
dataset demonstrates superior performance of this approach compared 
to other techniques in subject-independent emotion recognition from 
EEG signals.

Some researchers have also combined EEG signals with facial ex-
pression and speech in emotion recognition, as seen in Hassouneh 
et al. (2020), Pan et al. (2024), and Wang et al. (2023), among others. 
In Pan et al. (2024), a multi-modal emotion recognition framework is 
proposed, utilizing three deep learning models to extract features from 
facial expressions, speech and EEG signals. To process EEG signals, the 
authors designed a tree-like LSTM model that extracts temporal features 
at different stages to capture multiscale feature representations. The 
output of each model is then weighted to generate the final predictions. 
In Wang et al. (2023), the feature maps extracted by the deep learning 
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Table 13
Summary of state-of-the-art EEG classification.
 Ref. Description Results (Datasets and metrics)  
 Hermawan et al. (2024) A hybrid CNN–LSTM model consists of a convolutional layer to 

extract local features and two LSTM layers for temporal modeling
UPenn and Mayo Clinic’s Seizure Detection 
Challenge
Accuracy: 89% 
F1-score (avg.): 87%

 

 Pan et al. (2024) A tree-like LSTM to capture multiscale temporal feature 
representations from EEG signals

MAHNOB-HCI
Accuracy: 0.9450 (valence), 0.7628 (arousal)

 

 Wang et al. (2023) Parallel convolutional pipelines for extracting local and global 
features from EEG signals

DEAP
Accuracy: 85.72% (valence), 87.97% (arousal)
MAHNO B-HCI
Accuracy: 85.98% (valence), 85.23% (arousal)

 

 Abdulwahhab et al. (2024) A framework comprises two separated deep learning-based models 
using a 2D Convolutional Neural Network and an LSTM to process 
EEG signal images and normalized EEG signals

Bonn
Accuracy: 99.75% 
CHB-MIT
Accuracy: 97.12%

 

 Song et al. (2024) A conditional GAN integrated with SE attention in the discriminator 
and employing a cropped training strategy for improved data 
generation

BCI Competition IV 2a
Accuracy: 81.3% 
BCI Competition IV 2b
Accuracy: 90.3%

 

 Corley and Huang (2025) A Wasserstein GAN model is used to enhance the spatial resolution 
of EEG signals for classification by generating high-resolution signals 
from low-resolution inputs while simultaneously interpolating 
missing channels, addressing noise and artifact contamination

Dataset V (Berlin BCI)
Accuracy: 83.88% (scale 2), 82.00% (scale 4)

 

 Cai et al. (2025) A dual-branch hybrid model that denoises EEG signals by separately 
learning features from clean and noisy inputs, fusing them through 
fully connected layers, and leveraging convolutional layers with 
self-attention mechanisms

EEGdenoiseNet(EEG, EOG, EMG), MIT-BIH 
Arrhythmia (ECG) and semi-simulated EEG/EOG
𝜂 (artifact reduction): 82.35% (EMG), 91.80% 
(EOG), 88.97% (ECG), 82.07% (EOG+EMG)

 

models are combined through concatenation, and then they are fed into 
a fully connected classifier to generate the predictions. For EEG signals, 
two deep learning models are designed: one for extracting local features 
and the other for extracting global features. Both models are imple-
mented using convolutional layers. However, EEG signals can vary 
significantly across individuals, making it challenging to generalize 
models across different subjects.

Generative Models: GANs have been employed to enhance EEG 
signal classification. In Song et al. (2024), a conditional GAN model is 
proposed to overcome the limited number of EEG samples. To improve 
data generation quality, the discriminator is integrated with SE atten-
tion and a cropped training strategy is employed to leverage the entire 
spectrum of the EEG signals. In Corley and Huang (2025), a Wasserstein 
GAN model is employed to enhance the spatial resolution of EEG signals 
for EEG classification. The model takes low-resolution signals and gen-
erates the corresponding high-resolution signals while simultaneously 
interpolating the missing channels. EEG signals are often corrupted 
with noise and artifacts. DHCT-GAN is a dual-branch hybrid model 
designed to generate denoised EEG signals by processing both clean 
and noisy/artifact-corrupted signals (Cai et al., 2025). The generator 
consists of dual-branch feature learning pipelines, where one accepts 
clean signals while the other handles noisy/artifact signals to learn 
feature representations. The feature maps are then fused using two fully 
connected layers with a tanh activation function to generate denoised 
EEG signals. Both feature learning branches are identical, consisting of 
convolutional layers with local and global self-attention mechanisms, 
while the discriminators are implemented using convolutional and fully 
connected layers. Table  13 lists the summary of state-of-the-art EEG 
classification.

4.4. Robotics

Deep learning is a crucial component in modern robotics, enabling 
machines to perceive and interpret their surroundings. By leveraging 
sensors and cameras, robots can identify objects, navigate environments 
and interact with humans more effectively.
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4.4.1. Object identification
Deep learning plays a crucial role in object identification, allowing 

robots to recognize, classify, and differentiate between various objects 
in real-time. In Le and Ngo (2025), an intelligent system, integrating 
deep learning with robotic kinematic control is proposed for waste 
classification. The system consists of a robotic arm with a gripper and 
a camera placed in front of the robot to capture real-time video. YOLO 
model is trained to recognize and localize objects, allowing the system 
to determine the location, pick them up and classify them. A similar 
system is reported in Vukicevic et al. (2025), where a robotic arm 
is used to pick up objects on a conveyor and a camera is mounted 
above the conveyor to capture real-time video. The waste sorting 
process is divided into two tasks: localization of the waste objects and 
their classification. The object localization is performed using Segment 
Anything architecture (SAM) (Kirillov et al., 2023) which is based on 
vision transformer. Several lightweight SAM models are proposed to 
solve the localization task efficiently while minimizing computational 
requirements. For classification, object images are cropped using SAM’s 
output masks and classified by a MobileNetV2.

A deep learning-based method is proposed to detect tile edges 
and corners for tile-paving mobile robotic systems (Liu et al., 2025). 
The camera is mounted on a tile-grabbing platform that is parallel 
to the ground and approximately 10 to 20 cm above it. The system 
utilizes a YOLOv8 for semantic segmentation with rule-based post-
processing techniques. An unmanned ground vehicle-based is proposed 
for automated structural damage inspection (Ge and Sadhu, 2025). 
The robotic system utilizes LiDAR and a camera, integrating them via 
Robot Operating System for efficient control and data processing. The 
images are processed for the damage detection and segmentation using 
an improved YOLOv7 model, while the point cloud data is processed 
for real-time localization and 3D mapping using an enhanced Keep It 
Small and Simple-Iterative Closest Point algorithm. A similar system 
is reported in Dai et al. (2024), where object detection and tracking 
approach is proposed to fuse point cloud and visual data. The approach 
leverage YOLOv8 real-time object detection capabilities, while LiDAR 
provides accurate 3D spatial information and distance measurements, 
enhancing perception reliability. A fusion method aligns LiDAR data 
with camera images, enabling accurate 3D bounding boxes and object 
tracking. Table  14 lists the summary of state-of-the-art robot object 
identification.
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Table 14
Summary of state-of-the-art robot object identification.
 Ref. Hardware platform Model Task  
 Le and Ngo (2025) Robotic arm, AI Stereo ZED 2 camera, gripper, Intel Xeon E5 series CPU @ 

2.40 GHz
YOLOv4 Waste classification  

 Vukicevic et al. (2025) PC workstation, industrial camera, AMD Threadripper 3970X 32 cores CPU @ 
3.79 GHz, 128 GB RAM, two Titan RTX 24 GB GPUs

Segment Anything 
architecture (SAM)

Waste sorting  

 Kirillov et al. (2023) Mobile robot, camera, Nvidia RTX 3060 GPU YOLOv8 Tile edges and corners 
detection

 

 Ge and Sadhu (2025) Husky Unmanned ground vehicle, Intel Realsense camera, Velodyne VLP-16 
LiDAR, Intel i7 CPU

YOLOv7 Structural damage inspection  

 Dai et al. (2024) Agilex Scout Mini robot, Velodyne LiDAR, Intel D435 camera YOLOv8 Object tracking  
4.4.2. Path extraction and navigation
Deep learning models have been applied for robot navigation sys-

tems. In Alotaibi et al. (2024), LiDAR and a camera are to capture 
point cloud and visual data for a comprehensive understanding and 
navigation in the environments. The study experiments with Faster 
R-CNN, YOLOv5 and YOLOv8 for object detection. Additionally, the 
paper compares the performance of these systems in various real-world 
environments, showcasing their potential to enhance autonomous nav-
igation. Mobile robot navigation system is proposed utilizing semantic 
segmentation to determine the drivable paths (Mısır, 2024). First, 
Deeplabv3 (Chen et al., 2017) model with a ResNet-50 backbone is 
applied to segment scene images to extract drivable area. A perspec-
tive transformation then maps the segmented images to real-world 
space. Following the transformation, the image is divided into grids 
to determine the optimal path while avoiding obstacles. Finally, a PID 
controller guides the robot along the smoothed path to ensure accurate 
navigation in the environment.

In Cao et al. (2024), a method for orchard robot navigation utilizing 
a modified YOLOv8 model is proposed. The model locates vine tree 
trunks and identifies the center points of tree trunks at the lower end 
of the detection boxes. The least squares method is then applied to 
fit reference lines on both sides of the trunk. Furthermore, a multi-
scale attention mechanism is incorporated into the model to prioritize 
relevant features, enhancing the model performance. In Liu et al. 
(2025), deep learning is employed for navigation path extraction for 
agricultural robots. The authors propose Single-Stage Navigation Path 
Extraction Network (NPENet) to predict the road centerline in a single 
stage, eliminating the need for complex multi-stage processes such 
as line detection and segmentation. The proposed model uses resid-
ual blocks for feature extraction which includes batch normalization, 
leaky ReLU and convolutional layers, generating three key outputs: 
detecting if the robot is on the road, estimating the navigation line’s 
angle and predicting the vanishing point of the road. These outputs 
enable the robot to determine its trajectory and real-time navigation in 
orchard environments. Table  15 lists the summary of path extraction 
and navigation.

4.4.3. Human–robot interaction
Deep learning has significantly advanced human–robot interac-

tion, particularly through the integration of large language models 
(LLMs) designed for natural language processing. Despite their exten-
sive knowledge, LLMs have limitations, as they can sometimes generate 
inaccurate information, a phenomenon known as hallucination (Huang 
et al., 2025). To address this issue, LLMs need to be connected to the 
physical world by providing real-world contextual information to the 
models, enabling them to generate accurate responses that are relevant 
to the situation. This process is known as LLM grounding. In Asuzu 
et al. (2025), the authors explore the use of LLMs in human–robot 
interaction, focusing on collaborative planning between humans and 
robots. The LLM is guided to generate outputs within the predefined set 
of robot skills using a few-shot prompting, while vision models such as 
SAM-CLiP and ViLD are used for object identification within the scene, 
enabling the robot to perform actions in the real-world. By leveraging 
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LLMs, robots can understand and process natural language instructions 
and execute the corresponding actions, enabling efficient collaboration 
with human users. LLMs need to be aligned with human intentions to 
ensure effective communication and interaction between humans and 
robots. In Chen et al. (2024), a 3D scene graph is employed to represent 
objects and environments captured by 3D instance segmentation and 
2D image classification. Given the 3D scene graph, a complex task is 
decomposed using LLM through step-by-step reasoning by progressively 
retrieving relevant nodes from the graph. During the task solving, 
human intent is automatically identified, and the system generates 
responses accordingly.

In Allgeuer et al. (2024), a modular system architecture that can be 
easily extended is proposed to integrate LLM models for human–robot 
conversation and collaboration. Fig.  33 shows the system architecture, 
where the chat manager is the central to the system that coordinates 
the state and inference of the LLM model. The robot perception such 
as recognizing objects and human gesture is handled separately by 
different deep learning models while robot actions are operated by 
speech generation model and actuators for emotion expression, gaze 
control and arm movement. This approach allows the robot to engage 
in open-ended conversation and collaborate naturally with humans. 
Grounding LLMs can be challenging due to robot’s multi-modal per-
ception system. Furthermore, the incoming data has different sampling 
rate which makes data alignment difficult, causing the robotic system 
to miss valuable information. In Wang et al. (2024), a framework is pro-
posed for processing multi-modal inputs to generate coherent narratives 
about robot experiences including its internal status, current observa-
tion, planning and critical alert. The framework is divided into three 
stages: key event selection, experience summarization and narration 
generation modules. First, multi-modal data across three categories: 
environment, internal and planning are aligned by sampling at a fixed 
rate and associating each frame at the nearest timestamp. Based on the 
aligned data, key events are selected by detecting changes in optical 
flow, RGB images and joint states using heuristic and normalization 
techniques to identify moment of interest. Using the detected events, 
the robotic data is converted into natural language summaries, and 
an LLM generates user-friendly explanation by filtering repetitive and 
irrelevant information. Table  16 lists the summary of human–robot 
interaction.

5. Research challenges

Despite the success of deep learning in various applications, there 
are still fundamental challenges faced by researchers and practitioners. 
This section discusses the challenges ethical, technical and domain-
specific perspectives.

5.1. Ethical issues

Interpretability and explainability is crucial for building trust and 
understanding how predictive models make decisions, especially in 
high-stake applications such as healthcare and medical image anal-
ysis (Tonekaboni et al., 2019). However, as deep learning models 
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Table 15
Summary of state-of-the-art path extraction and navigation.
 Ref. Hardware platform Model Task  
 Alotaibi et al. (2024) Mobile robot, 2MP Logitech webcam, LiDAR, Raspberry Pi 4, 

4 GB RAM
YOLOv8 Semantic navigation  

 Mısır (2024) Mobile robot, camera, Nvidia Jetson Nano Deeplabv3+ 
(ResNet50 
backbone)

Path planning  

 Cao et al. (2024) Mobile robot, Intel RealSense D455 camera, Intel Core i7 
10870H CPU @ 2.20 GHz, Nvidia GeForce GTX 1650 Ti GPU

YOLOv8 Navigation line extraction  

 Liu et al. (2025) Mobile robot, Intel RealSense cameras, Nvidia Jetson Xavier NPENet Navigation path extraction  
Fig. 33. A grounded chat architecture (Allgeuer et al., 2024).
Table 16
Summary of state-of-the-art human–robot interaction.
 Ref. Hardware platform Model Task  
 Asuzu et al. (2025) Niryo Ned robot and Intel RealSense 

D435i camera
LLM: GPT-3.5,
Object detection: SAM-CLiP and 
ViLD

Robot planning  

 Chen et al. (2024) N.A. LLM: GPT-4 turbo Human collaboration  
 Allgeuer et al. (2024) Neuro-Inspired COLlaborator (NICOL) 

robot
LLM: GPT, Vicuna, Mistral
Human detection: YOLOX
Pose estimation: HRNet
Object detection: ViLD

Conversation and collaboration 

 Wang et al. (2024) MStretch SE3 robot, Intel RealSense 
D435i and D405

Object segmentation: YOLO World Robot behavior announcement  
become more intricate and complex with numerous layers, subnetworks 
and a large number of parameters, the models are often perceived 
as a ‘‘black box’’ and difficult to explain in terms of decision-making 
processes. Therefore, it is crucial for the researchers to focus on meth-
ods that provide insights into how a deep learning model performs 
the prediction and how its decisions are influenced by the input data, 
making it more transparent and trustworthy. Numerous methods have 
been proposed for interpreting and explaining the decisions of deep 
learning models, which can be categorized into visualization (feature 
attribution), model distillation and intrinsic (explainable by itself). 
Visualization methods involve the use of scientific visualization such as 
saliency maps or heatmaps to express the explanation by highlighting 
the degree of association between the inputs and the predictions (Tjoa 
et al., 2023). The heatmaps identify the saliency of the input fea-
tures influencing the model’s predictions. The visualization approach 
is simple and intuitive and can be applied to tabular data and image 
data. Furthermore, it can be used to identify and debug issues in deep 
learning models, leading to improved performance and robustness.

Model distillation is an approach to approximating a complex model 
by fitting a simpler model using the training set. The simpler model is 
built typically using a simpler or interpretable algorithm such as linear 
regression, decision tree or rule-based methods (Li and Shen, 2024). In 
this approach, the simpler model is trained to resemble the predictive 
behavior of the complex model. Then, the simpler model may serve as 
the proxy or surrogate model for explaining the complex model. Model 
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distillation can be used together with visualization to further enhance 
the interpretability of the complex model (Termritthikun et al., 2023). 
Model distillation seeks explanations of the models that were never 
designed to be explainable. Ideally, the explanation of a deep learning 
model’s prediction should be included as part of the model output, or 
the explanation can be derived from the architecture of the model. This 
is because an intrinsic model can learn not only the mapping between 
the input and output, but also generate an explanation of the prediction 
that is faithful to the model’s behavior. Attention mechanisms are the 
key to this approach, providing a form of attention weights that can be 
used to explain why the model made a particular decision (Xiong et al., 
2022). Another type of intrinsic approach is to train the model to simul-
taneously perform the prediction task and generate the explanation for 
its predictions (Fernandes et al., 2023). This ‘‘additional task’’ can be 
in the form of a text explanation or model prototype which embeds the 
semantic meaning of the prediction. However, the intrinsic approach 
is more difficult to apply because the user needs additional knowledge 
and understanding of the model’s architecture and inner workings.

Deep learning models are increasingly being deployed in mak-
ing high-stake decision including recruitment (Freire and de Castro, 
2021), criminal justice (Dass et al., 2023) and credit scoring (Gicić 
et al., 2023). There are several advantages of deep learning-based 
systems in which, unlike humans, machines are able to process vast 
amounts of data and applications quickly and consistently. However, 
deep learning-based systems have the risk of being prone to biases 
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present in the data used for training which can lead to unfairness and 
injustice. Numerous efforts have been made to mitigate this issue which 
can be categorized into modeling bias detection and modeling bias 
mitigation. Detection of modeling bias refers to the process of iden-
tifying and quantifying biases that may present in predictive models. 
This approach involves the use of statistical analysis, fairness metrics, 
counterfactual testing and human review to detect bias in the models. 
For instance, visualization-based methods such as attribution maps are 
used to indicate which regions are significant to the predictions (Schaaf 
et al., 2021). This in turn can be used to detect and quantify bias using 
metrics such as Relevance Mass Accuracy, Relevance Rank Accuracy 
and Area over the perturbation curve (AOPC). In Giloni et al. (2022), 
two modules are presented for estimating bias in predictive models. 
The first module utilizes an unsupervised deep neural network with a 
custom loss function to generate hidden representation of the input data 
called bias vectors, revealing the underlying bias of each feature. The 
second module combines these bias vectors into a single vector rep-
resenting the bias estimation of each feature, achieved by aggregating 
them using the absolute averaging operation.

Bias mitigation refers to the process of reducing the presence of 
bias in predictive models, which can be done in three stages. The first 
stage combats bias by modifying the training data, either relabeling the 
labels or perturbing the feature values (Iosifidis et al., 2019; Kehrenberg 
et al., 2020). The second stage addresses bias during the training of the 
model by applying regularization terms to the loss function to penalize 
discrimination. In Jain et al. (2023), a loss function based on bias parity 
score (BPS) is introduced to measure the degree of similarity of a statis-
tical measure such as accuracy across different subgroups. The BPS term 
is added to the loss function as a regularizer to the original prediction 
task. The last stage mitigates bias after the predictive models have been 
successfully trained. This stage applies post-processing approaches such 
as reinforcement learning to obtain a fairer model (Yang et al., 2023). 
For instance, the detection of minority classes is rewarded to prevent 
bias towards the majority class. This allows the model to generalize 
well across different patient demographics.

5.2. Technical issues

Even though deep learning architectures have achieved state-of-
the-art across various computer vision tasks, they often come with 
large model parameters (Raiaan et al., 2024). The architecture and 
complexity of a deep learning network determine the number of model 
parameters. The deeper the network, the larger the number of model 
parameters. However, deep learning models with large parameters 
often suffer limitations when deploying on end devices. For instance, 
a deep learning model developed for security monitoring by analyz-
ing video data using 3D-CNNs might suffer deployment issues when 
deploying such models on low-resourced systems like smartphones 
or small-scale IoT devices. Model training and inference for deep 
learning models with large parameters demands substantial processing 
power. As the number of parameters increases, so does the compu-
tational complexity, resulting in longer model training duration and 
more hardware needs. Furthermore, large parameter sizes translate 
to increased memory requirements, limiting their deployment on end 
devices. This is because these end devices often have battery, pro-
cessor, or memory capacity limitations. To address these challenges, 
it is important to develop sophisticated but lightweight architectures 
that can achieve state-of-the-art with few model parameters. Such 
lightweight models will be characterized by their ability to deliver 
competitive performance while mitigating computational complexity 
and memory requirements, making them well-suited for deployment 
on resource-constrained devices. An approach would be to develop 
novel lightweight plug-and-play modules that can be plugged to a few 
layered deep learning architectures to improve feature learning without 
incurring additional model complexity. Other approaches could involve 
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leveraging model compression techniques to reduce the size and com-
putational complexity of deep learning models. Researchers can focus 
on improving pruning methods (Li et al., 2019), which can identify and 
eliminate redundant parameters or connections, thereby reducing the 
model’s footprint without compromising performance. Furthermore, 
quantization techniques (Yang et al., 2019) can be further explored to 
reduce the precision of weights and activations, therefore, enabling effi-
cient representation with lower memory requirements. Also, knowledge 
distillation techniques (Stanton et al., 2021) can be further investigated 
to facilitate the transfer of knowledge from a complex teacher model 
to a simpler student model, therefore, enabling compact yet effective 
representations.

Deep learning training involves complex processes that require 
efficient optimization to ensure fast convergence and resource manage-
ment. As models grow in size and complexity, challenges such as slow 
convergence, vanishing gradients, and computational limitations be-
come more pronounced. Researchers have explored various methods to 
overcome these issues, proposing innovative approaches like predicting 
parameter change and incorporating them into training, thus reducing 
training time and improving the model performance (Ying et al., 2024). 
Researchers also leverage prior experience to optimize parameter ad-
justments to reduce forward and back propagation steps, thus reducing 
computational costs and making training more efficient (Wang et al., 
2024). Others have proposed alternative training algorithms such as 
alternating minimization (Yan et al., 2025) and random search based on 
the annealing method (Krasnoproshin and Matskevich, 2024). Overall, 
the researchers aim to accelerate learning and improve efficiency either 
by decomposing the optimization problem into sequential sub-problems 
or by refining the search space based on parameter value ranges.

Adversarial attacks and defense mechanisms in deep learning rep-
resent a critical area of research and development, particularly as deep 
learning models become increasingly integrated into various applica-
tions. Adversarial attacks involve the deliberate manipulation of input 
data to mislead or deceive deep learning models, leading to incorrect 
predictions or behavior (Akhtar and Mian, 2018). Szegedy et al. (2013) 
was the first to identify this intriguing shortcoming of deep neural 
networks in image classification. They showed that even with their 
great accuracy, deep learning models are surprisingly vulnerable to 
adversarial attacks that take the form of tiny image changes that are 
(almost) invisible to human vision systems. A neural network classifier 
may radically alter its prediction about an image as a result of such 
an attack. Furthermore, such a model can indicate high confidence 
in wrong predictions, which can be catastrophic for deep learning 
models deployed in medical or security fields, among many others. In 
generative models, several studies have investigated how adversarial 
attacks affect autoencoders and GANs, as seen in Tabacof et al. (2016) 
where a method to manipulate input images in a way that deceives 
variational autoencoders into reconstructing an entirely different image 
was introduced. In recent times, the focus of adversarial attack research 
has been on images, but studies have shown that adversarial attacks are 
not limited to image data; they can also affect other types of data such 
as text, signals, audio, and video (Zhang et al., 2020; Jiang et al., 2019; 
Esmaeilpour et al., 2019).

5.3. Domain-specific issues

Building and employing deep learning models face several chal-
lenges. The training of deep learning requires a large number of in-
stances (examples) to achieve high accuracy and generalization (Mu-
nappy et al., 2022). Furthermore, the complexity of deep neural net-
works may lead to overfitting, where the model performs well on 
training data but fails to generalize on new, unseen data. This phe-
nomenon frequently arises when the models are trained on insufficient 
data, highlighting the importance of diverse and extensive datasets. 
However, the data collection is time-consuming and often require 
domain experts, specialized training and standardization (Luca et al., 
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2022). Moreover, this process is prone to error and has the risk of 
introducing biases into the dataset which can significantly impact the 
performance of the trained model. One of the approaches to address this 
issue is transfer learning. Transfer learning involves the use of a deep 
learning model (known as pre-trained model) that is trained on a large 
dataset for solving a specific task (with a small dataset) (Zhuang et al., 
2020). The pre-trained model serves as a basis for the model training 
by fine-tuning the weights of the pre-trained model and adapting it 
to the new prediction task. This approach helps to mitigate the lack 
of training data in the target domain. Furthermore, transfer learning 
reduces computational resources required to train the model and helps 
faster convergence.

Another approach that can be employed to address the lack of 
data is data augmentation. Data augmentation is a convenient method 
that increases the number of instances by performing transformation 
functions on the existing instances without changing the labels (Mu-
muni and Mumuni, 2022). In the domain of computer vision, image 
transformation such as rotation, translation and cropping. However, 
it is important to consider the output of the transformation because 
the resultant may not represent the actual data. For example, flipping 
or adding noise to a signal may introduce distortion or changing the 
characteristics (trend, seasonality and cyclic variations) of the signal. 
Thus, careful consideration must be given to ensure that the generated 
instances still accurately represent the underlying patterns present in 
the data. Data augmentation can also be realized by generating syn-
thetic data to supplement the training set. Synthetic data is artificially 
created data that resembles real data but is generated using statistical 
methods or deep generative models (Hu et al., 2023; Murtaza et al., 
2023). The generated data can complement the less-diverse, limited 
datasets, providing a broader range of examples for the model to 
learn from. However, generating synthetic data that accurately re-
flects the characteristics of the real-world data is challenging. Careful 
consideration must be given to the choice of models and parameters 
used to ensure the synthetic data is realistic and representative of the 
real-world data.

Data annotation is expensive and time-consuming. The problem 
is exacerbated when the data is of low quality corrupted with noise 
which may lead to bad, resulting in unreliable training data. One of 
the approaches addresses this issue is active learning. Active learning is 
an approach where the learning algorithm selectively queries the most 
informative data points for labeling. The aim is to improve predictive 
model efficiency with fewer training data, thus reducing the overall 
cost of data annotation. The approach involves training a model using 
an initial training set, and then a subset of unlabeled data is selected 
for labeling by external annotators. The newly labeled instances are 
appended to the training set for retraining or fine-tuning. This process 
is repeated until the model performance reaches a desired threshold 
or the labeling budget has exhausted. The core principle behind active 
learning is the query strategy or, essentially how to select the most in-
formative data for labeling that will be beneficial to the model training. 
In general, the query may select the most ambiguous instances based 
on the model predictions, instances that will have a significant impact 
on the model performance, or instances that cover the distribution of 
the entire feature space (Li et al., 2024). The dynamic and sequential 
nature of real-world applications presents different challenges, which 
led to the development of online active learning. This approach was 
introduced to address specific issues, including data streams, con-
cept drift and environmental changes (Cacciarelli and Kulahci, 2024). 
Recently, researchers have investigated the use of LLMs for data annota-
tion. The study presents methods for generating annotations, assessing 
annotations and utilizing annotations (Tan et al., 2024).

Self-supervised learning is another approach that was introduced 
to mitigate the issue of limited labeled datasets. In self-supervised 
learning, the model learns from unlabeled data by generating its own 
labels from the input data (Gui et al., 2024). This approach essentially 
creates a pretext task which the model solves without requiring manual 
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annotations or labeled datasets. By solving the pretext task, the model 
leverages the underlying structure in the data and learn useful repre-
sentations that can be used for specific tasks. For example, in computer 
vision, a model might predict the speed (Altabrawee and Mohd Noor, 
2025) or repeated scenes (Altabrawee and Mohd Noor, 2024) in a 
video. In natural language processing, it could predict missing words in 
sentences to learn the dependencies between words (Lee et al., 2021). 
The key advantage of self-supervised learning is that it allows the model 
to take advantage of large amounts of unlabeled data, which is often 
much more abundant and cheaper to collect than labeled data. The 
learned representations can then be used for downstream tasks like 
classification, regression, or segmentation.

6. Summary and future directions

We have discussed the state-of-the-art applications and challenges of 
deep learning in computer vision, natural language processing and time 
series analysis. In this section, we summarize the advancements made 
which can be grouped into model architecture, contextual enhance-
ment, and loss function and optimization. Finally, we discuss possible 
future works in these domains.

Model Architecture: The recent advancements in computer vi-
sion focus on vision transformers (ViT) for scalable representation 
learning (Dosovitskiy et al., 2021). In image classification and image 
segmentation, ViTs are utilized to capture global context and relation-
ships between different parts of an image, while in object detection, 
ViTs are used to streamline the detection process by eliminating the 
traditional components like anchor boxes and non-maximum suppres-
sion (Carion et al., 2020). However, ViTs lack the ability to exploit 
local spatial features and struggle with hyperparameter sensitivity and 
performance on smaller datasets. To address this issue, researchers have 
developed hybrid deep learning architectures such as conformer (Peng 
et al., 2023) and MaxViT (Tu et al., 2022) that combine both trans-
formers and convolutional neural networks to capture both local and 
global features. Similar trend is observed in modern natural language 
processing whereby the basis of the deep learning models is trans-
former architectures such as BERT (Devlin et al., 2018) and its variants 
to achieve remarkable accuracy in tasks such as text classification, 
machine translation and text generation.

While recent advancements in computer vision and natural lan-
guage processing have predominantly relied on transformer architec-
tures, the field of time series analysis focuses on a different trajectory, 
where transformers research is lagging due to fundamental challenges 
in data structure, sequence length and dataset size and availability. 
Notably, areas such as HAR and financial prediction have seen signif-
icant progress through the development of hybrid architectures that 
do not depend on transformers. Instead, these advancements leverage 
recurrent neural networks and convolutional neural networks, often 
incorporating attention mechanisms. The hybrid architectures allow 
the models to capture both local features and temporal dependen-
cies in the data, which is crucial for time series analysis (Khan and 
Ahmad, 2021; Ige and Mohd Noor, 2023). The hybrid attention mecha-
nisms improve the feature extraction process by dynamically weighting 
important channel, spatial and temporal features, enhancing model 
performance (Gao et al., 2021; Agac and Incel, 2024; Tang et al., 
2022). GAN models are used to address data scarcity in HAR, where 
the generator consists of convolutional layers (Lupión et al., 2024; Kia 
et al., 2024), with LSTM (Chan and Noor, 2021) while the discriminator 
consists of convolutional layers.

Similar trends can be observed in ECG and EEG classification, where 
convolutional and recurrent neural networks are commonly used to 
build hybrid models (Alamatsaz et al., 2024; Hermawan et al., 2024), 
with attention mechanisms (Sun et al., 2024; Chen et al., 2022). Gen-
erative models such as variational autoencoder (Dai et al., 2019) and 
generative adversarial network are used to generate data to address 
challenges posed by limited datasets (Yang et al., 2024; Msigwa et al., 
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2024; Song et al., 2024), poor quality (Corley and Huang, 2025), 
noisy signals (Cai et al., 2025), and overfitting (Zhu et al., 2019). The 
generative approach employs GAN only or with encoder–decoder (Yang 
et al., 2024), where the generator consists of convolutional layers with 
attention mechanisms or bidirectional LSTM, while the discriminator 
consists of convolutional layers with attention mechanisms.

Contextual Enhancement: Recent advancements in text classifi-
cation focus on capturing contextual information utilizing approaches 
such as joint embeddings of labels (Wang et al., 2018) and words as 
well as aspect-aware methods that enhance feature extraction (Zhu 
et al., 2023). Conversely, in machine translation, although transformers 
have proven effective, they often struggle to capture nuanced lan-
guage features and contexts. To address this issue, various strategies 
have been introduced such as concatenating contextual sentences and 
context-sensitive training (Wu et al., 2022; Kim et al., 2023). In text 
generation, additional contexts are provided to improve both the qual-
ity and diversity of the generated sentences such as incorporating the 
category context (Li et al., 2023) and style context (Kwon et al., 2024) 
into text generation process.

In image generation, the researchers focus on improving the quality 
and relevance of generated images by enhancing the alignment be-
tween input text and images, while also addressing issues like fuzzy 
shapes and diversity through innovative deep learning architectures 
such as incorporating attention mechanisms and fusion modules into 
the model. Furthermore, recent models like DF-GAN (Tao et al., 2022) 
and DMF-GAN (Yang et al., 2024) showcase a shift towards single-
stage generators with regularization strategies that maintain details 
while enhancing diversity. In text generation, BERT and its variants 
are the basis of the deep learning models. The research focuses on 
hierarchical architectures, capturing long text dependencies (Ma et al., 
2021) and leveraging domain knowledge through label sequence (Xie 
et al., 2022) and conversation sequence (Li et al., 2019) to bridge 
semantic gaps. Overall, the advancements show a clear trend towards 
improving contextual awareness and feature representation.

LLMs are increasingly being leveraged in robotics for improving 
human–robot interaction. The main challenge of integrating LLMs is 
bridging the gap between robots and the physical world to provide real-
world contexts, a process known as LLM grounding. The concept of LLM 
grounding refers to how machines make sense of abstract language such 
as words and ideas by connecting them to objects they can actually 
experience or sense in the real world. To this end, sensors such as 
cameras and microphones, along with object detection, pose estimation 
and speech recognition methods, are used for semantic and perceptual 
grounding. The robot data are streamed are at varying sampling rates, 
so they need to be aligned and carefully selected to identify key 
events (Wang et al., 2024). The detected objects and their relationships 
are then modeled using 3D scene graph for scene understanding (Chen 
et al., 2024). Central to the grounding system is a module that collates 
and constructs the text prompts which are sent to the LLM (Allgeuer 
et al., 2024). The text prompts are typically formulated by integrating 
a set of predefined robot skills that can be executed (Asuzu et al., 2025).

Loss Function and Optimization: Researchers are increasingly fo-
cused on refining loss functions to improve classification accuracy. For 
instance, in image classification, some studies introduce additive terms 
to the cross-entropy loss to reward well-classified instances (Zhao et al., 
2022), while others propose asymmetric polynomial loss functions that 
prioritize positive instances to tackle class imbalance (Huang et al., 
2023) and adaptive loss function that dynamically adjust the weights 
assigned to class-level components based on model performance (Mal-
donado et al., 2023). Another approach to address class imbalanced 
is data augmentation through generating virtual samples (Zhu et al., 
2024), oversampling with target-aware autoencoders for estimating 
target values for new features (Belhaouari et al., 2024). In time series 
analysis, similar approach has been proposed such as penalizing mis-
classification of minority classes (Wang et al., 2024), maximizing the 
minimum recall of the classes (Ircio et al., 2023). Improved training 
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strategies have been proposed to address class imbalanced data such as 
iteratively selecting the most informative instances (Moles et al., 2024) 
and contrastive learning to keep the instances of each fine-grained 
clusters away from the minority class (Zhu et al., 2024).

Future Directions: Looking ahead, the future of deep learning 
presents numerous opportunities for growth and innovation. Future 
models could explore non-sequential hybrid architectures of trans-
former and convolutional neural networks to leverage the strengths 
of both approaches, enhancing performance in image classification, 
object detection and image segmentation. Furthermore, researchers 
could investigate simpler or lightweight architectures and new training 
schemes to address the long training time associated with transformers. 
Future research in image generation may explore advanced frameworks 
or architectures that further integrate semantic understanding, perhaps 
by employing hierarchical attention modules and/or fusion modules 
to capture both local and global features more effectively. Addition-
ally, incorporating unsupervised learning or self-supervised learning 
approaches could reduce reliance on labeled datasets, allowing models 
to learn from a diverse range of inputs.

In the area of natural language processing, future research in text 
classification and machine translation could explore the integration of 
external knowledge bases and domain-specific embeddings may fur-
ther improve context understanding and label alignment. Additionally, 
refining context incorporation methods such as dynamic context up-
dating during translation may enhance the model performance. In text 
generation, advancing towards more interactive and adaptive systems 
that can maintain context over extended dialogs and narratives is cru-
cial. Furthermore, frameworks that can leverage multi-modalities (text, 
audio, and visual) for richer contextual understanding may facilitate 
the development of more advanced applications across these domains. 
Future research can also focus on exploring adversarial attacks in these 
domains and developing tailored defense mechanisms. Furthermore, 
researchers can further investigate the practical implications of adver-
sarial attacks in real-world scenarios, such as in autonomous vehicles 
and medical imaging. Understanding the potential impact of adversarial 
attacks in these applications can inform the development of more 
robust and secure systems.

Real-time processing capabilities are paramount, future work can 
develop efficient models or algorithms for real-time processing of HAR, 
speech recognition, ECG and EEG signals. This could involve optimizing 
existing architectures and leveraging hardware acceleration techniques 
to enable real-time inference on resource-constrained devices such as 
wearable sensors and implantable devices. Furthermore, future models 
could explore lightweight transformers to enhance feature representa-
tion for time series analysis. Due to the sensitive nature of financial 
research, future work can focus on enhancing the interpretability of 
deep learning models in financial predictions. Researchers should ex-
plore techniques to explain the predictions of models, to improve trust 
and understanding of model decisions, which is essential for adoption 
in HAR, speech recognition and finance.

Future research in data generation for time series analysis and 
pervasive computing should focus on developing more advanced tech-
niques to address data scarcity and improve model generalization. In 
HAR, frameworks that can generate diverse signals for subjects of 
different ages, genders, as well as physical abilities, may facilitate the 
development of models that can generalize across different populations 
and real-world scenarios (Jimale and Mohd Noor, 2023). Moreover, the 
generated data should capture sensor noise, variations in user behavior, 
and diverse environmental conditions. In finance, synthetic market data 
should model complex dependencies, volatility patterns and anomalies 
to improve trend and risk predictions. For EEG and ECG classification, 
researchers could explore deep generative models that can create phys-
iologically meaningful synthetic signals while preserving individual 
variability. Future models could explore methods for adapting or per-
sonalizing models to account for inter-subject variability and improve 
performance on individual subjects. Furthermore, EEG electrodes cover 
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only a fraction of the brain’s surface, resulting in limited coverage of 
neural activity. Deep learning models could investigate strategies to 
infer activity from unobserved brain regions or integrate information 
from multiple modalities to provide more comprehensive coverage. 
These areas can still be further explored.

Future research in robot object identification and navigation will 
focus on enhancing real-time perception, generalization across diverse 
environments, and increasing robustness to occlusions and dynamic 
obstacles. Furthermore, researchers can explore multimodal learning, 
integrating vision with LiDAR and tactile sensing to improve scene un-
derstanding. Advances in self-supervised learning and few-shot learning 
could enable robots to identify and navigate complex environments 
with minimal labeled data. LLMs will play a crucial role in human–
robot interactions, facilitating natural language understanding, intent 
recognition and context-aware decision-making (Zhang et al., 2023). 
Researchers should optimize LLMs for real-time processing on robots 
and improve their grounding in physical environments. Additionally, 
future work can explore a deep learning-based navigation with LLMs 
to develop more autonomous, assistive and socially intelligent robots.

The future of AI lies beyond deep learning, moving towards a 
conscious intelligent system that mimics human cognition (Butlin et al., 
2023). Achieving this requires a significant advancement in hardware 
and software architectures, enabling systems to process information 
with greater efficiency, adaptability and reasoning capabilities. Beyond 
mere pattern recognition, future of AI will need to integrate symbolic 
reasoning, causal inference and common sense to truly emulate human 
thought (Marra et al., 2024; Colelough and Regli, 2025; Bhuyan et al., 
2024). Future research will likely focus on hybrid AI models that com-
bine deep learning with symbolic AI, enabling machines to understand 
abstract concepts, reason about cause and effect and apply knowledge 
across domains. Quantum computing, with its unique property of en-
tanglement could exponentially accelerate deep learning training and 
inference (Wu et al., 2025; Klusch et al., 2024). Future models could ex-
plore quantum neural networks which could process high dimensional 
data more effectively and discover patterns that are not possible by 
classical methods. Quantum-based optimizers could also solve problems 
that are infeasible for classical graphical processing units or tensor 
processing units. A more radical approach is neuromorphic computing 
that uses specialized hardware to mimic the structure and function of 
the human brain, enabling low-power inference, parallel processing and 
real-time learning and adaptation (Shrestha et al., 2022; Kudithipudi 
et al., 2025). This results in autonomous AI systems that can solve 
complex tasks requiring quick response time and adapt to changing 
situations. Finally, multi-modal intelligence enables AI to process and 
integrate multiple types of sensory input, including vision, speech and 
touch, providing a more holistic view of the world, similar to human 
perception (Fei et al., 2022). 

7. Conclusion

Deep learning has become the prominent data-driven approach in 
various state-of-the-art applications. Its importance lies in its ability 
to revolutionize many aspects of research and industries and tackle 
complex problems which were once impossible to overcome. Numerous 
surveys have been published on deep learning, reviewing the con-
cepts, model architectures and applications. However, the studies do 
not discuss the emerging trends in the state-of-the-art applications of 
deep learning and emphasize the important traits and elements in the 
models. This paper presents a structured and comprehensive survey 
of deep learning, focusing on the latest trends and advancements in 
state-of-the-art applications such as computer vision, natural language 
processing, time series analysis and pervasive computing, and robotics. 
It explores key elements and traits in modern deep learning models, 
highlighting their significance in addressing complex challenges across 
diverse domains. The discussion also covers future research directions 
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in advancing these fields. Furthermore, this paper presents a compre-
hensive review of the deep learning fundamentals, which is essential 
for understanding the core principles behind modern deep learning 
models. The survey finishes by discussing the critical challenges and 
future directions in deep learning.
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