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Outline

= Perceptron

= Neural Networks
= Training Neural Networks
= Feature Extraction in Deep Learning

= Convolutional Neural Networks
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Perceptron: Forward Propagation

Linear combination
of inputs

X 1

1 \
Xz( y=a=yg WO+ZWJ-XJ-
X4 Activation bias

function

Inputs Weights Sum  Non-linearity Output
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Activation Function

= An activation function is a mathematical function that determines the
output of a unit in the network

= |t introduces non-linearities into the network, allowing it to learn and
model complex relationships between inputs and outputs

= The common activation functions are Sigmoid, Hyperbolic Tangent and
Rectified Linear Unit (ReLU)
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Activation Function

Sigmoid (Logistic)

0.5

Hyperbolic tangent

1.0
057/
66 T T T

1
1+e 2

g(z) =

Sigmoid maps the
input to a value in the
range of 0 and 1

— e_Z
9(2) = —ez e
Hyperbolic tangent
(tanh) is similar to
sigmoid but the output
is between -1 and 1
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Rectified Linear Unit (RelLU)

6

g(z) = max(0, z)

RelLU is a piecewise linear
function whereby the
output is zero if the input
is less than 0, and the
output is the input itself if
the input is more than 0
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* Theinputis propagated to a
layer of perceptrons (hidden
layer)

* The output of the hidden layer

) is propagated to the output
layer

* Because of the hidden layer,
the state is not directly
observable

a.k.a. Neural Network
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Multi-layer Perceptron

 The forward propagation is
the same
e Each unit of the hidden layer

1
takes the input, calculates the
. sum of weighted input and
%o Vi the activation
Xm

a.k.a. Neural Network
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* The output of the hidden layer
is used as input to the output
layer

* The unit calculates the sum of
weighted input and the
activation

a.k.a. Neural Network
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Deeper neural network architecture

More than one hidden layer can be stacked e.g. 2, 3 hidden layers

The forward propagation i.e. the output of a hidden layer is used as input to the next hidden
layer
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Training Neural Networks
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Parameter Estimation

Xl
- prediction, y )
e
ground truth,y
X2
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Parameter Estimation

{r’/_\

adjust W(l) adJust W(Z) /\
prediction, y
ground truth,y
Loss function
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Training Parameters

= Loss function
= Regression: mean squared error

= Classification: (binary) cross entropy

= Learning Rate,
= Default value: 0.001 (TensorFlow)

» |f a is too small, gradient descent can be slow
= |f a is too large, gradient descent can overshoot and may fail to converge
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Feature Extraction in Deep
Learning
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Using Spatial Structure

Process a region (patch of input data) to extract the details (local
features)
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Feature Extraction (Case Study)

Given an image of five

We recognize this image is a digit five

Copyright © 2024 Halim Noor, USM
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Feature Extraction (Case Study)

Can a computer recognize given a distorted/deformed image of 57?

=IIIIIIIIII= ? ==IIIIIIIII=
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Feature Extraction

One way to recognize it is to capture/detect the features of the
image — corner 1, corner 2 and horizontal line

-

Copyright © 2024 Halim Noor, USM



T SCHOOL OF
;g», % lﬂ_ﬂM . €, COMPUTER
dnsn ) SCIENCES

UNIVERSITI SAINS MALAYSIA

Feature Extraction

A feature is a mini-image — a small 2D array of pixels
Assuming black = 0 and white = 1

Copyright © 2024 Halim Noor, USM
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Feature Extraction
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The three filters are designed to detect three types of features
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1[1]0 1]2]2 0[0]o
2[1]0 0[0]2 111
2[1]1 0]0]1 2[2]2

3
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Convolution Operation

Filter

0@ C d w | x
00
g \h y |

i\ k)1

A\ 4

aw+bx | lbw+cx | cw +dx
+ey+fz |tfy+gz|+gy+hz

A\ 4

ew+fx | fw+gx | gw+hx
+tiy+jz | +jy+kz | +ky+1z

Feature map

How do filters/convolution pick up the features?

Apply convolution operation
Copyright © 2024 Halim Noor, USM
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Convolution Operation

=
15

21110 1x1=1

add
outputs

—
oo

—
—

element-wise
multiply

How do filters/convolution pick up the features?

Apply convolution operation
Copyright © 2024 Halim Noor, USM
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Convolution Operation
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Feature Extraction
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Connect a patch of input neurons to a neuron in hidden layer
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SCHOOL OF
COMPUTER
SCIENCES

€

i M
UNIVERSITI SAINS MALAYSIA

Feature Extraction

Connect a patch of input neurons to a neuron in hidden layer

Move the filter across the image from top left to bottom right

Copyright © 2024 Halim Noor, USM
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Feature Extraction
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Connect a patch of input neurons to a neuron in hidden layer
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Feature Extraction

ssssssssses
s

Connect a patch of input neurons to a neuron in hidden layer
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Convolutional Neural
Networks (CNN)

Copyright © 2024 Halim Noor, USM
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Convolutional Neural Networks

LEETRE I I B e e

-l
-
-

Input image Convolution layer Pooling layer  Fully-connected
(feature map) layer

Convolution: apply filters to extract local features
Non-linearity: non-linear activation function e.g. ReLU
Pooling: downsampling operation on each feature map

Copyright © 2024 Halim Noor, USM
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Convolutional Neural Networks

LEETRE I I B e e

Input image Convolution layer Pooling layer  Fully-connected
(feature map) layer

Train CNN model with image data
Learn the weights of filters in convolutional layers
Learn the weights of fully-connected layer

Copyright © 2024 Halim Noor, USM
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Parameters of Convolutional Layers

CEEEET N RN B

Input image

Convolution layer Pooling layer  Fully-connected
(feature map) layer

Copyright © 2024 Halim Noor, USM
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Filter (Kernel) Size

= Kernel height and width

= The number of pixels a kernel “sees” at once

= Typically use odd numbers so that there is a “center” pixel

= Kernel does not need to be square

Height: 3, Width: 3 Height: 1, Width: 3 Height: 3, Width: 1

Copyright © 2024 Halim Noor, USM
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Without Padding

1 2 0 3 1

1 0 0 2 2 -1 1 2 -2

2 1 2 1 1 1 1 0

0 0 1 0 0 -1 1-2 | 0

1 2 1 1 1 kernel output
input

There will be an “edge effect” if we apply the filter directly to input data
Pixels near the edge will not be the “center pixels”
The pixels will be processed only once (we are loosing information)

Copyright © 2024 Halim Noor, USM
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With Padding

1 2 0 3 1

1 0 0 2 2 -1 1 2

2 1 2 1 1 1 1 0

0 0 1 0 0 -1 | -2 0

1 > 1 1 1 kernel
input

Pad extra pixels around the frame
The pixels at the edge will be the “center pixels”
Typically the value of padding is zero (zero-padding)

Copyright © 2024 Halim Noor, USM
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-1 1 2

1 1 0

-1 -2 0
kernel

input

The ”step size” as the kernel moves across the image
Can be different for vertical and horizontal steps
When stride is greater than 1, it scales down the output dimension

Copyright © 2024 Halim Noor, USM
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Depth — Input Channel

—t
—_—-—
-
—
—
L. -

Input image feature map

The pixel may be associated with more than one value

The values referred to as “channel” e.g. RGB image (3 channels)
The number of channels is referred to as the “depth”

Each channel has a filter (kernel)

Copyright © 2024 Halim Noor, USM
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Depth — Output Channel (Volume)

\\ depth ] ]
Feature map dimension
II hxwXd
|
h and w are spatial dimension
d is the depth = num. of
-------E————- ____-__-"____.E".E fllterS
----7 -1 height
width
Input image feature map
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Pooling Layers

R - - -

Input image

Convolution layer
(feature map)

Pooling layer
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Fully-connected
layer

Reduce the feature map size by mapping a patch of pixels to a single value
Does not have parameters
There are different types of pooling operations

Copyright © 2024 Halim Noor, USM
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Pooling Layers

= Reduce the feature map size

= Parameters: pooling size

= There are different types of pooling operations

Copyright © 2024 Halim Noor, USM
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Pooling Layers — Max-pool

= For each distinct patch, represent it by the maximum

= 2X2 max-pool

2 1 2 2

5 4 5 7 S
—

1 1 0 4 3 4

3 2 2 3
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Pooling Layers — Average-pool

= For each distinct patch, represent it by the average

= 2x2 average-pool

2 1 2 2

5 4 5 7 3 4
—

1 1 0 4 714 9/4

3 2 2 3
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CNN for Classification

= Learn features in input image through convolution

= Introduce non-linearity through activation function (real world data is
non-linear)

= Reduce dimensionality with pooling

Copyright © 2024 Halim Noor, USM
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CNN for Classification

INPUT
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CNN for Classification

’ /// /'//
# _
oo
INPUT CONVOLUTION + RELU POOLING
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CNN for Classification

%%%%%%ﬁ <iii:é; high level

features

INPUT CONVOLUTION + RELU POOLING CONVOLUTION + RELU POOLING

~

FEATURE LEARNING

Copyright © 2024 Halim Noor, USM



CNN for Classification
17 high level

features
INPUT CONVOLUTION + RELU POOLING CONVOLUTION + RELU POOLING
)
b d

FEATURE LEARNING

Learn features in stages or hierarchical manner

Low Level Features Mid Level Features High Level Features
Lines & Dots Eyes, Nose & Mouth Facial Structure
Images taken from Lee, Honglak, et al. "ConvoIutior%glﬁ%régrge@f%%oﬁ@II%} y&%bféwsupervised learning of hierarchical representations.”
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high level

— CAR
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— VAN
= —
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L 3 :
L O [] — BicYcLE
FULLY
CONVOLUTION + RELU  POOLING  CONVOLUTION + RELU POOLING pamen FULLY - sortmax
i il d i

FEATURE LEARNING CLASSIFICATION

The high level features are fed to the classification part for
classifying the image into the corresponding classes.
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End
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