
Copyright © 2024 Halim Noor, USM

IMAGE ANALYTIC USING
DEEP LEARNING

Mohd Halim Mohd Noor, PhD

Copyright © 2024 Halim Noor, USM

Outline
▪ Perceptron

▪ Neural Networks

▪ Training Neural Networks

▪ Feature Extraction in Deep Learning

▪ Convolutional Neural Networks

Copyright © 2024 Halim Noor, USM

Perceptron: Forward Propagation

ො𝑦 = 𝑎 = 𝑔 𝑤0 + ෍

𝑗=0

𝑑

𝑤𝑗𝑥𝑗

Activation
function

Linear combination
of inputs

bias

Inputs Weights Sum Non-linearity Output

Copyright © 2024 Halim Noor, USM

Activation Function
▪ An activation function is a mathematical function that determines the

output of a unit in the network

▪ It introduces non-linearities into the network, allowing it to learn and
model complex relationships between inputs and outputs

▪ The common activation functions are Sigmoid, Hyperbolic Tangent and
Rectified Linear Unit (ReLU)

Copyright © 2024 Halim Noor, USM

Activation Function

Sigmoid (Logistic)

𝑔 𝑧 =
1

1 + 𝑒−𝑧

Hyperbolic tangent

𝑔 𝑧 =
𝑒𝑧 − 𝑒−𝑧

𝑒𝑧 + 𝑒−𝑧

Rectified Linear Unit (ReLU)

𝑔 𝑧 = max 0, 𝑧

Sigmoid maps the
input to a value in the
range of 0 and 1

Hyperbolic tangent
(tanh) is similar to
sigmoid but the output
is between -1 and 1

ReLU is a piecewise linear
function whereby the
output is zero if the input
is less than 0, and the
output is the input itself if
the input is more than 0

Copyright © 2024 Halim Noor, USM

Perceptron (Simplified)

𝑧 = 𝑤0 + σ𝑗=0
𝑑 𝑤𝑗𝑥𝑗

𝑎 = 𝑔 𝑧

Copyright © 2024 Halim Noor, USM

Multi-layer Perceptron

a.k.a. Neural Network

• The input is propagated to a
layer of perceptrons (hidden
layer)

• The output of the hidden layer
is propagated to the output
layer

• Because of the hidden layer,
the state is not directly
observable

Copyright © 2024 Halim Noor, USM

Multi-layer Perceptron

a.k.a. Neural Network

• The forward propagation is
the same

• Each unit of the hidden layer
takes the input, calculates the
sum of weighted input and
the activation

Copyright © 2024 Halim Noor, USM

Multi-layer Perceptron

a.k.a. Neural Network

• The output of the hidden layer
is used as input to the output
layer

• The unit calculates the sum of
weighted input and the
activation

Copyright © 2024 Halim Noor, USM

Deep Neural Network

Deeper neural network architecture
More than one hidden layer can be stacked e.g. 2, 3 hidden layers
The forward propagation i.e. the output of a hidden layer is used as input to the next hidden
layer

Copyright © 2024 Halim Noor, USM

Copyright © 2024 Halim Noor, USM

Training Neural Networks

Copyright © 2024 Halim Noor, USM

Parameter Estimation

𝑒
𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛, ො𝑦

𝑔𝑟𝑜𝑢𝑛𝑑 𝑡𝑟𝑢𝑡ℎ, 𝑦

Copyright © 2024 Halim Noor, USM

Parameter Estimation

𝑊 1

𝑊 2adjust

+

−

adjust

+

−

𝑒
𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛, ො𝑦

𝑔𝑟𝑜𝑢𝑛𝑑 𝑡𝑟𝑢𝑡ℎ, 𝑦

Loss function

Copyright © 2024 Halim Noor, USM

Training Parameters
▪ Loss function

▪ Regression: mean squared error

▪ Classification: (binary) cross entropy

▪ Learning Rate, 𝛼
▪ Default value: 0.001 (TensorFlow)

▪ If 𝛼 is too small, gradient descent can be slow

▪ If 𝛼 is too large, gradient descent can overshoot and may fail to converge

Copyright © 2024 Halim Noor, USM

Copyright © 2024 Halim Noor, USM

Feature Extraction in Deep
Learning

Copyright © 2024 Halim Noor, USM

Using Spatial Structure

Process a region (patch of input data) to extract the details (local
features)

Copyright © 2024 Halim Noor, USM

Feature Extraction (Case Study)

We recognize this image is a digit five

Given an image of five

Copyright © 2024 Halim Noor, USM

Feature Extraction (Case Study)

?
=

Can a computer recognize given a distorted/deformed image of 5?

Copyright © 2024 Halim Noor, USM

Feature Extraction

1

2

3

1

2

3

One way to recognize it is to capture/detect the features of the
image – corner 1, corner 2 and horizontal line

Copyright © 2024 Halim Noor, USM

Feature Extraction

1

1 1 0
1 1 0
1 1

1
0

1
0

0 0 0 0 0
1 1 1

1
1
1

1 1 1

1 1 0
1 1 0
1 1 1

1 1
0 0

1
1

0 0 0 0 0 1
1 1 1
1 1 1

F1

F2

F3

A feature is a mini-image – a small 2D array of pixels
Assuming black = 0 and white = 1

Copyright © 2024 Halim Noor, USM

Feature Extraction

1 1 0
2 1 0
2 1 1

0 0 0
1 1 1
2 2 2

0
0

1

0

2 2
2
1

0

1 2 3

1

1 1 0
1 1 0
1 1

1
0

1
0

0 0 0 0 0
1 1 1

1
1
1

1 1 1

1 1 0
1 1 0
1 1 1

1 1
0 0

1
1

0 0 0 0 0 1
1 1 1
1 1 1

F1

F2

F3

The three filters are designed to detect three types of features

Copyright © 2024 Halim Noor, USM

Convolution Operation

How do filters/convolution pick up the features?
Apply convolution operation

Input

a b c d

e f g h

i j k l

w x

y z

Filter

aw + bx
+ ey + fz

bw + cx
+ fy + gz

ew + fx
+ iy + jz

fw + gx
+ jy + kz

cw + dx
+ gy + hz

gw + hx
+ ky + lz

Feature map

Copyright © 2024 Halim Noor, USM

1

1 1 0
1 1 0
1 1

Convolution Operation

1 1 0

2 1 0

2 1 1

1×1=1

× 9=

add
outputs

element-wise
multiply

1 1 0

2 1 0

2 1 1

How do filters/convolution pick up the features?
Apply convolution operation

Copyright © 2024 Halim Noor, USM

Convolution Operation

Copyright © 2024 Halim Noor, USM

Feature Extraction

Connect a patch of input neurons to a neuron in hidden layer

-1 1 2

0 0 -1

-2 1 2

𝑊𝑖𝑗

filter

Copyright © 2024 Halim Noor, USM

Feature Extraction

Connect a patch of input neurons to a neuron in hidden layer
Move the filter across the image from top left to bottom right

Copyright © 2024 Halim Noor, USM

Feature Extraction

Connect a patch of input neurons to a neuron in hidden layer

Copyright © 2024 Halim Noor, USM

Feature Extraction

Connect a patch of input neurons to a neuron in hidden layer

Copyright © 2024 Halim Noor, USM

Copyright © 2024 Halim Noor, USM

Convolutional Neural
Networks (CNN)

Copyright © 2024 Halim Noor, USM

Convolutional Neural Networks

Input image Convolution layer
(feature map)

Pooling layer Fully-connected
layer

Convolution: apply filters to extract local features
Non-linearity: non-linear activation function e.g. ReLU
Pooling: downsampling operation on each feature map

Copyright © 2024 Halim Noor, USM

Convolutional Neural Networks

Input image Convolution layer
(feature map)

Pooling layer Fully-connected
layer

Train CNN model with image data
Learn the weights of filters in convolutional layers

Learn the weights of fully-connected layer

Copyright © 2024 Halim Noor, USM

Input image Convolution layer
(feature map)

Pooling layer Fully-connected
layer

Parameters of Convolutional Layers

Copyright © 2024 Halim Noor, USM

Height: 3, Width: 3 Height: 1, Width: 3 Height: 3, Width: 1

Filter (Kernel) Size
▪ Kernel height and width

▪ The number of pixels a kernel “sees” at once

▪ Typically use odd numbers so that there is a “center” pixel

▪ Kernel does not need to be square

Copyright © 2024 Halim Noor, USM

There will be an “edge effect” if we apply the filter directly to input data
Pixels near the edge will not be the “center pixels”
The pixels will be processed only once (we are loosing information)

Without Padding

Copyright © 2024 Halim Noor, USM

Pad extra pixels around the frame
The pixels at the edge will be the “center pixels”
Typically the value of padding is zero (zero-padding)

With Padding

Copyright © 2024 Halim Noor, USM

3

0

The ”step size” as the kernel moves across the image
Can be different for vertical and horizontal steps
When stride is greater than 1, it scales down the output dimension

Stride – No Padding

Copyright © 2024 Halim Noor, USM

-1 2

3

Stride – With Padding

Copyright © 2024 Halim Noor, USM

Input image feature map

channel

The pixel may be associated with more than one value
The values referred to as “channel” e.g. RGB image (3 channels)
The number of channels is referred to as the “depth”
Each channel has a filter (kernel)

Depth – Input Channel

Copyright © 2024 Halim Noor, USM

Depth – Output Channel (Volume)

Input image feature map

depth
Feature map dimension
ℎ × 𝑤 × 𝑑

ℎ and 𝑤 are spatial dimension
𝑑 is the depth = num. of
filters

height

width

Copyright © 2024 Halim Noor, USM

Reduce the feature map size by mapping a patch of pixels to a single value
Does not have parameters
There are different types of pooling operations

Pooling Layers

Input image Convolution layer
(feature map)

Pooling layer Fully-connected
layer

Copyright © 2024 Halim Noor, USM

Pooling Layers
▪ Reduce the feature map size

▪ Parameters: pooling size

▪ There are different types of pooling operations

Copyright © 2024 Halim Noor, USM

Pooling Layers – Max-pool
▪ For each distinct patch, represent it by the maximum

▪ 2x2 max-pool

Copyright © 2024 Halim Noor, USM

Pooling Layers – Average-pool
▪ For each distinct patch, represent it by the average

▪ 2x2 average-pool

Copyright © 2024 Halim Noor, USM

CNN for Classification
▪ Learn features in input image through convolution

▪ Introduce non-linearity through activation function (real world data is
non-linear)

▪ Reduce dimensionality with pooling

Copyright © 2024 Halim Noor, USM

CNN for Classification

47

Copyright © 2024 Halim Noor, USM

CNN for Classification

48

Copyright © 2024 Halim Noor, USM

CNN for Classification

49

high level
features

Copyright © 2024 Halim Noor, USM

CNN for Classification

50

high level
features

Images taken from Lee, Honglak, et al. "Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations."

Lines & Dots Eyes, Nose & Mouth Facial Structure

Low Level Features Mid Level Features High Level Features

Learn features in stages or hierarchical manner

Copyright © 2024 Halim Noor, USM

CNN for Classification

51

The high level features are fed to the classification part for
classifying the image into the corresponding classes.

high level
features

Copyright © 2024 Halim Noor, USM

Copyright © 2024 Halim Noor, USM

End

	Slide 1: Image Analytic Using Deep Learning
	Slide 2
	Slide 3
	Slide 4: Outline
	Slide 5: Perceptron: Forward Propagation
	Slide 6: Activation Function
	Slide 7: Activation Function
	Slide 8: Perceptron (Simplified)
	Slide 9: Multi-layer Perceptron
	Slide 10: Multi-layer Perceptron
	Slide 11: Multi-layer Perceptron
	Slide 12: Deep Neural Network
	Slide 13: Training Neural Networks
	Slide 14: Parameter Estimation
	Slide 15: Parameter Estimation
	Slide 16: Training Parameters
	Slide 17: Feature Extraction in Deep Learning
	Slide 18: Using Spatial Structure
	Slide 19: Feature Extraction (Case Study)
	Slide 20: Feature Extraction (Case Study)
	Slide 21: Feature Extraction
	Slide 22: Feature Extraction
	Slide 23: Feature Extraction
	Slide 24: Convolution Operation
	Slide 25: Convolution Operation
	Slide 26: Convolution Operation
	Slide 27: Feature Extraction
	Slide 28: Feature Extraction
	Slide 29: Feature Extraction
	Slide 30: Feature Extraction
	Slide 31: Convolutional Neural Networks (CNN)
	Slide 32: Convolutional Neural Networks
	Slide 33: Convolutional Neural Networks
	Slide 34: Parameters of Convolutional Layers
	Slide 35: Filter (Kernel) Size
	Slide 36: Without Padding
	Slide 37: With Padding
	Slide 38: Stride – No Padding
	Slide 39: Stride – With Padding
	Slide 40: Depth – Input Channel
	Slide 41: Depth – Output Channel (Volume)
	Slide 42: Pooling Layers
	Slide 43: Pooling Layers
	Slide 44: Pooling Layers – Max-pool
	Slide 45: Pooling Layers – Average-pool
	Slide 46: CNN for Classification
	Slide 47: CNN for Classification
	Slide 48: CNN for Classification
	Slide 49: CNN for Classification
	Slide 50: CNN for Classification
	Slide 51: CNN for Classification
	Slide 52: End

