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Perceptron: Forward Propagation

ො𝑦 = 𝑎 = 𝑔 𝑤0 + ෍

𝑗=0

𝑑

𝑤𝑗𝑥𝑗

Activation 
function

Linear combination 
of inputs

bias

Inputs Weights Sum Non-linearity Output
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Activation Function
▪ An activation function is a mathematical function that determines the 

output of a unit in the network

▪ It introduces non-linearities into the network, allowing it to learn and 
model complex relationships between inputs and outputs

▪ The common activation functions are Sigmoid, Hyperbolic Tangent and 
Rectified Linear Unit (ReLU)
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Activation Function

Sigmoid (Logistic)

𝑔 𝑧 =
1

1 + 𝑒−𝑧

Hyperbolic tangent

𝑔 𝑧 =
𝑒𝑧 − 𝑒−𝑧

𝑒𝑧 + 𝑒−𝑧

Rectified Linear Unit (ReLU)

𝑔 𝑧 = max 0, 𝑧

Sigmoid maps the 
input to a value in the 
range of 0 and 1

Hyperbolic tangent 
(tanh) is similar to 
sigmoid but the output 
is between -1 and 1

ReLU is a piecewise linear 
function whereby the 
output is zero if the input 
is less than 0, and the 
output is the input itself if 
the input is more than 0
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Perceptron (Simplified)

𝑧 = 𝑤0 + σ𝑗=0
𝑑 𝑤𝑗𝑥𝑗

𝑎 = 𝑔 𝑧  
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Multi-layer Perceptron

a.k.a. Neural Network

• The input is propagated to a 
layer of perceptrons (hidden 
layer)

• The output of the hidden layer 
is propagated to the output 
layer

• Because of the hidden layer, 
the state is not directly 
observable
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Multi-layer Perceptron

a.k.a. Neural Network

• The forward propagation is 
the same

• Each unit of the hidden layer 
takes the input, calculates the 
sum of weighted input and 
the activation
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Multi-layer Perceptron

a.k.a. Neural Network

• The output of the hidden layer 
is used as input to the output 
layer

• The unit calculates the sum of 
weighted input and the 
activation
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Deep Neural Network

Deeper neural network architecture
More than one hidden layer can be stacked e.g. 2, 3 hidden layers
The forward propagation i.e. the output of a hidden layer is used as input to the next hidden 
layer
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Training Neural Networks
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Parameter Estimation

𝑒
𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛, ො𝑦 

𝑔𝑟𝑜𝑢𝑛𝑑 𝑡𝑟𝑢𝑡ℎ, 𝑦 
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Parameter Estimation
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𝑔𝑟𝑜𝑢𝑛𝑑 𝑡𝑟𝑢𝑡ℎ, 𝑦 

Loss function
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Training Parameters
▪ Loss function

▪ Regression: mean squared error

▪ Classification: (binary) cross entropy

▪ Learning Rate, 𝛼
▪ Default value: 0.001 (TensorFlow)

▪ If 𝛼 is too small, gradient descent can be slow

▪ If 𝛼 is too large, gradient descent can overshoot and may fail to converge
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Feature Extraction in Deep 
Learning
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Using Spatial Structure

Process a region (patch of input data) to extract the details (local 
features)
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Feature Extraction (Case Study)

We recognize this image is a digit five

Given an image of five
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Feature Extraction (Case Study)

?
=

Can a computer recognize given a distorted/deformed image of 5?
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Feature Extraction

1

2

3

1

2

3

One way to recognize it is to capture/detect the features of the 
image – corner 1, corner 2 and horizontal line
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Feature Extraction
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A feature is a mini-image – a small 2D array of pixels
Assuming black = 0 and white = 1
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Feature Extraction
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The three filters are designed to detect three types of features
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Convolution Operation

How do filters/convolution pick up the features?
Apply convolution operation 

Input

a b c d

e f g h

i j k l

w x

y z

Filter

aw + bx 
+ ey + fz

bw + cx 
+ fy + gz

ew + fx 
+ iy + jz

fw + gx 
+ jy + kz

cw + dx 
+ gy + hz

gw + hx 
+ ky + lz

Feature map
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1

1 1 0
1 1 0
1 1

Convolution Operation

1 1 0

2 1 0

2 1 1

1×1=1

× 9=

add 
outputs

element-wise 
multiply

1 1 0

2 1 0

2 1 1

How do filters/convolution pick up the features?
Apply convolution operation 
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Convolution Operation
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Feature Extraction

Connect a patch of input neurons to a neuron in hidden layer

-1 1 2

0 0 -1

-2 1 2

𝑊𝑖𝑗

filter
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Feature Extraction

Connect a patch of input neurons to a neuron in hidden layer
Move the filter across the image from top left to bottom right
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Feature Extraction

Connect a patch of input neurons to a neuron in hidden layer
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Feature Extraction

Connect a patch of input neurons to a neuron in hidden layer
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Convolutional Neural 
Networks (CNN)
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Convolutional Neural Networks

Input image Convolution layer
(feature map)

Pooling layer Fully-connected
layer

Convolution: apply filters to extract local features
Non-linearity: non-linear activation function e.g. ReLU
Pooling: downsampling operation on each feature map
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Convolutional Neural Networks

Input image Convolution layer
(feature map)

Pooling layer Fully-connected
layer

Train CNN model with image data
Learn the weights of filters in convolutional layers 

Learn the weights of fully-connected layer
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Input image Convolution layer
(feature map)

Pooling layer Fully-connected
layer

Parameters of Convolutional Layers
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Height: 3, Width: 3 Height: 1, Width: 3 Height: 3, Width: 1

Filter (Kernel) Size
▪ Kernel height and width

▪ The number of pixels a kernel “sees” at once

▪ Typically use odd numbers so that there is a “center” pixel

▪ Kernel does not need to be square
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There will be an “edge effect” if we apply the filter directly to input data
Pixels near the edge will not be the “center pixels”
The pixels will be processed only once (we are loosing information)

Without Padding
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Pad extra pixels around the frame
The pixels at the edge will be the “center pixels”
Typically the value of padding is zero (zero-padding)

With Padding
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3

0

The ”step size” as the kernel moves across the image
Can be different for vertical and horizontal steps
When stride is greater than 1, it scales down the output dimension

Stride – No Padding
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-1 2

3

Stride – With Padding
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Input image feature map

channel

The pixel may be associated with more than one value
The values referred to as “channel” e.g. RGB image (3 channels)
The number of channels is referred to as the “depth”
Each channel has a filter (kernel)

Depth – Input Channel
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Depth – Output Channel (Volume)

Input image feature map

depth
Feature map dimension
ℎ × 𝑤 × 𝑑 

ℎ and 𝑤 are spatial dimension
𝑑 is the depth = num. of 
filters

height

width
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Reduce the feature map size by mapping a patch of pixels to a single value
Does not have parameters
There are different types of pooling operations

Pooling Layers

Input image Convolution layer
(feature map)

Pooling layer Fully-connected
layer
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Pooling Layers
▪ Reduce the feature map size

▪ Parameters: pooling size

▪ There are different types of pooling operations
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Pooling Layers – Max-pool
▪ For each distinct patch, represent it by the maximum

▪ 2x2 max-pool
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Pooling Layers – Average-pool
▪ For each distinct patch, represent it by the average

▪ 2x2 average-pool
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CNN for Classification
▪ Learn features in input image through convolution

▪ Introduce non-linearity through activation function (real world data is 
non-linear)

▪ Reduce dimensionality with pooling
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CNN for Classification

47
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CNN for Classification

48
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CNN for Classification

49

high level
features
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CNN for Classification

50

high level
features

Images taken from Lee, Honglak, et al. "Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations." 

Lines & Dots Eyes, Nose & Mouth Facial Structure

Low Level Features Mid Level Features High Level Features

Learn features in stages or hierarchical manner
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CNN for Classification

51

The high level features are fed to the classification part for 
classifying the image into the corresponding classes.

high level
features
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End
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